Quotient f-modules

Let L be an f-module over f-algebra A. Then $L^{\sim}$ is a cf-module over the f-algebra $(A^{\sim})^{\sim}_n$. Quotient f-modules are studied and subsequently a connection between Z$L^{\sim}$ and $[A^{\sim})^{\sim}_n]\hat{e}$ is investigated.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Turkish journal of mathematics 2005, Vol.29 (2), p.121-127
1. Verfasser: UYAR, Ayşe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 2
container_start_page 121
container_title Turkish journal of mathematics
container_volume 29
creator UYAR, Ayşe
description Let L be an f-module over f-algebra A. Then $L^{\sim}$ is a cf-module over the f-algebra $(A^{\sim})^{\sim}_n$. Quotient f-modules are studied and subsequently a connection between Z$L^{\sim}$ and $[A^{\sim})^{\sim}_n]\hat{e}$ is investigated.
format Article
fullrecord <record><control><sourceid>ulakbim</sourceid><recordid>TN_cdi_ulakbim_primary_51091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>51091</sourcerecordid><originalsourceid>FETCH-ulakbim_primary_510913</originalsourceid><addsrcrecordid>eNpjYuA0NDYw1jUzNLFkAbMNdA0MLC04GLiKi7MMDIyMTUwtOBmEAkvzSzJT80oU0nRz81NKc1KLeRhY0xJzilN5oTQ3g4yba4izh25pTmJ2UmZufEFRZm5iUWW8qaGBpaExAWkAxrgk9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quotient f-modules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>TÜBİTAK Scientific Journals</source><creator>UYAR, Ayşe</creator><creatorcontrib>UYAR, Ayşe</creatorcontrib><description>Let L be an f-module over f-algebra A. Then $L^{\sim}$ is a cf-module over the f-algebra $(A^{\sim})^{\sim}_n$. Quotient f-modules are studied and subsequently a connection between Z$L^{\sim}$ and $[A^{\sim})^{\sim}_n]\hat{e}$ is investigated.</description><identifier>ISSN: 1300-0098</identifier><identifier>EISSN: 1303-6149</identifier><language>eng</language><publisher>TÜBİTAK</publisher><subject>Bölüm ; Matematik ; Mathematics ; module ; Modül ; Quotient ; Riesz space ; Riesz uzayı ; Vector lattice ; Vektör kafesi</subject><ispartof>Turkish journal of mathematics, 2005, Vol.29 (2), p.121-127</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>UYAR, Ayşe</creatorcontrib><title>Quotient f-modules</title><title>Turkish journal of mathematics</title><description>Let L be an f-module over f-algebra A. Then $L^{\sim}$ is a cf-module over the f-algebra $(A^{\sim})^{\sim}_n$. Quotient f-modules are studied and subsequently a connection between Z$L^{\sim}$ and $[A^{\sim})^{\sim}_n]\hat{e}$ is investigated.</description><subject>Bölüm</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>module</subject><subject>Modül</subject><subject>Quotient</subject><subject>Riesz space</subject><subject>Riesz uzayı</subject><subject>Vector lattice</subject><subject>Vektör kafesi</subject><issn>1300-0098</issn><issn>1303-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYuA0NDYw1jUzNLFkAbMNdA0MLC04GLiKi7MMDIyMTUwtOBmEAkvzSzJT80oU0nRz81NKc1KLeRhY0xJzilN5oTQ3g4yba4izh25pTmJ2UmZufEFRZm5iUWW8qaGBpaExAWkAxrgk9A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>UYAR, Ayşe</creator><general>TÜBİTAK</general><scope/></search><sort><creationdate>2005</creationdate><title>Quotient f-modules</title><author>UYAR, Ayşe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ulakbim_primary_510913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bölüm</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>module</topic><topic>Modül</topic><topic>Quotient</topic><topic>Riesz space</topic><topic>Riesz uzayı</topic><topic>Vector lattice</topic><topic>Vektör kafesi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UYAR, Ayşe</creatorcontrib><jtitle>Turkish journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UYAR, Ayşe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quotient f-modules</atitle><jtitle>Turkish journal of mathematics</jtitle><date>2005</date><risdate>2005</risdate><volume>29</volume><issue>2</issue><spage>121</spage><epage>127</epage><pages>121-127</pages><issn>1300-0098</issn><eissn>1303-6149</eissn><abstract>Let L be an f-module over f-algebra A. Then $L^{\sim}$ is a cf-module over the f-algebra $(A^{\sim})^{\sim}_n$. Quotient f-modules are studied and subsequently a connection between Z$L^{\sim}$ and $[A^{\sim})^{\sim}_n]\hat{e}$ is investigated.</abstract><pub>TÜBİTAK</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1300-0098
ispartof Turkish journal of mathematics, 2005, Vol.29 (2), p.121-127
issn 1300-0098
1303-6149
language eng
recordid cdi_ulakbim_primary_51091
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; TÜBİTAK Scientific Journals
subjects Bölüm
Matematik
Mathematics
module
Modül
Quotient
Riesz space
Riesz uzayı
Vector lattice
Vektör kafesi
title Quotient f-modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ulakbim&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quotient%20f-modules&rft.jtitle=Turkish%20journal%20of%20mathematics&rft.au=UYAR,%20Ay%C5%9Fe&rft.date=2005&rft.volume=29&rft.issue=2&rft.spage=121&rft.epage=127&rft.pages=121-127&rft.issn=1300-0098&rft.eissn=1303-6149&rft_id=info:doi/&rft_dat=%3Culakbim%3E51091%3C/ulakbim%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true