Almost Hermitian manifold with flat Bochner tensor

Many researchers investigated the flat Bochner tensor on some kinds of almost Hermitian manifold. In the present paper the author studies this tensor on general class almost Hermitian manifold by using a new methodology which is called an adjoint G-structure space. Thus this study generalize the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pure and applied mathematics 2010, Vol.3 (4), p.730-730
1. Verfasser: ABOOD, Habeeb M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 4
container_start_page 730
container_title European journal of pure and applied mathematics
container_volume 3
creator ABOOD, Habeeb M
description Many researchers investigated the flat Bochner tensor on some kinds of almost Hermitian manifold. In the present paper the author studies this tensor on general class almost Hermitian manifold by using a new methodology which is called an adjoint G-structure space. Thus this study generalize the results which are found out by those researchers. It is proved that if M is an almost Hermitian manifold of class R1 with flat Bochner tensor, then either M is 2-dimensional flat Ricci manifold or n-dimensional (n > 2) flat scalar curvature tensor manifold. As well, it is proved that if M is an almost Hermitian manifold with flat Bochner tensor, then M is a manifold of class R3 if and only if M is a linear complex manifold. Later on, equivalently of classes R2 and R3 is investigated. Finally we prove that if M is flat manifold with flat Bochner tensor, then M is an Einstein manifold with a cosmological constant. 2000 Mathematics Subject Classifications: 53C55, 53B35
format Article
fullrecord <record><control><sourceid>ulakbim</sourceid><recordid>TN_cdi_ulakbim_primary_127638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>127638</sourcerecordid><originalsourceid>FETCH-LOGICAL-u107t-2ffc4607f10b0a8d1afbd28bf4e7350e2f0a7690594421f95758488b8eb430ae3</originalsourceid><addsrcrecordid>eNpNzM1KAzEUQOEgCpbaRyjkBQZu_iaZZS1qhUI3ui43nVyamsxIkiK-vQtduDrf6tywhVBgO2O0uv3ne7aq9QIAUjhQvVgwuUl5ro3vQsmxRZx4xinSnEb-FduZU8LGH-fTeQqFtzDVuTywO8JUw-qvS_b-_PS23XX7w8vrdrPvrgJs6yTRSfdgSYAHdKNA8qN0nnSwykCQBGj7AcygtRQ0GGucds674LUCDGrJ1r_fa8IPH_Pxs8SM5fsopO2VUz9pbD9-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Almost Hermitian manifold with flat Bochner tensor</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>ABOOD, Habeeb M</creator><creatorcontrib>ABOOD, Habeeb M</creatorcontrib><description>Many researchers investigated the flat Bochner tensor on some kinds of almost Hermitian manifold. In the present paper the author studies this tensor on general class almost Hermitian manifold by using a new methodology which is called an adjoint G-structure space. Thus this study generalize the results which are found out by those researchers. It is proved that if M is an almost Hermitian manifold of class R1 with flat Bochner tensor, then either M is 2-dimensional flat Ricci manifold or n-dimensional (n &amp;gt; 2) flat scalar curvature tensor manifold. As well, it is proved that if M is an almost Hermitian manifold with flat Bochner tensor, then M is a manifold of class R3 if and only if M is a linear complex manifold. Later on, equivalently of classes R2 and R3 is investigated. Finally we prove that if M is flat manifold with flat Bochner tensor, then M is an Einstein manifold with a cosmological constant. 2000 Mathematics Subject Classifications: 53C55, 53B35</description><identifier>ISSN: 1307-5543</identifier><identifier>EISSN: 1307-5543</identifier><language>eng</language><publisher>xxx</publisher><ispartof>European journal of pure and applied mathematics, 2010, Vol.3 (4), p.730-730</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>ABOOD, Habeeb M</creatorcontrib><title>Almost Hermitian manifold with flat Bochner tensor</title><title>European journal of pure and applied mathematics</title><description>Many researchers investigated the flat Bochner tensor on some kinds of almost Hermitian manifold. In the present paper the author studies this tensor on general class almost Hermitian manifold by using a new methodology which is called an adjoint G-structure space. Thus this study generalize the results which are found out by those researchers. It is proved that if M is an almost Hermitian manifold of class R1 with flat Bochner tensor, then either M is 2-dimensional flat Ricci manifold or n-dimensional (n &amp;gt; 2) flat scalar curvature tensor manifold. As well, it is proved that if M is an almost Hermitian manifold with flat Bochner tensor, then M is a manifold of class R3 if and only if M is a linear complex manifold. Later on, equivalently of classes R2 and R3 is investigated. Finally we prove that if M is flat manifold with flat Bochner tensor, then M is an Einstein manifold with a cosmological constant. 2000 Mathematics Subject Classifications: 53C55, 53B35</description><issn>1307-5543</issn><issn>1307-5543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNzM1KAzEUQOEgCpbaRyjkBQZu_iaZZS1qhUI3ui43nVyamsxIkiK-vQtduDrf6tywhVBgO2O0uv3ne7aq9QIAUjhQvVgwuUl5ro3vQsmxRZx4xinSnEb-FduZU8LGH-fTeQqFtzDVuTywO8JUw-qvS_b-_PS23XX7w8vrdrPvrgJs6yTRSfdgSYAHdKNA8qN0nnSwykCQBGj7AcygtRQ0GGucds674LUCDGrJ1r_fa8IPH_Pxs8SM5fsopO2VUz9pbD9-</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>ABOOD, Habeeb M</creator><general>xxx</general><scope/></search><sort><creationdate>2010</creationdate><title>Almost Hermitian manifold with flat Bochner tensor</title><author>ABOOD, Habeeb M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-u107t-2ffc4607f10b0a8d1afbd28bf4e7350e2f0a7690594421f95758488b8eb430ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABOOD, Habeeb M</creatorcontrib><jtitle>European journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABOOD, Habeeb M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Almost Hermitian manifold with flat Bochner tensor</atitle><jtitle>European journal of pure and applied mathematics</jtitle><date>2010</date><risdate>2010</risdate><volume>3</volume><issue>4</issue><spage>730</spage><epage>730</epage><pages>730-730</pages><issn>1307-5543</issn><eissn>1307-5543</eissn><abstract>Many researchers investigated the flat Bochner tensor on some kinds of almost Hermitian manifold. In the present paper the author studies this tensor on general class almost Hermitian manifold by using a new methodology which is called an adjoint G-structure space. Thus this study generalize the results which are found out by those researchers. It is proved that if M is an almost Hermitian manifold of class R1 with flat Bochner tensor, then either M is 2-dimensional flat Ricci manifold or n-dimensional (n &amp;gt; 2) flat scalar curvature tensor manifold. As well, it is proved that if M is an almost Hermitian manifold with flat Bochner tensor, then M is a manifold of class R3 if and only if M is a linear complex manifold. Later on, equivalently of classes R2 and R3 is investigated. Finally we prove that if M is flat manifold with flat Bochner tensor, then M is an Einstein manifold with a cosmological constant. 2000 Mathematics Subject Classifications: 53C55, 53B35</abstract><pub>xxx</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1307-5543
ispartof European journal of pure and applied mathematics, 2010, Vol.3 (4), p.730-730
issn 1307-5543
1307-5543
language eng
recordid cdi_ulakbim_primary_127638
source EZB-FREE-00999 freely available EZB journals
title Almost Hermitian manifold with flat Bochner tensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ulakbim&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Almost%20Hermitian%20manifold%20with%20flat%20Bochner%20tensor&rft.jtitle=European%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=ABOOD,%20Habeeb%20M&rft.date=2010&rft.volume=3&rft.issue=4&rft.spage=730&rft.epage=730&rft.pages=730-730&rft.issn=1307-5543&rft.eissn=1307-5543&rft_id=info:doi/&rft_dat=%3Culakbim%3E127638%3C/ulakbim%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true