Approximation and Idealization: Why the Difference Matters
It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsist...
Gespeichert in:
Veröffentlicht in: | Philosophy of science 2012-04, Vol.79 (2), p.207-232 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 2 |
container_start_page | 207 |
container_title | Philosophy of science |
container_volume | 79 |
creator | Norton, John D. |
description | It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations. |
doi_str_mv | 10.1086/664746 |
format | Article |
fullrecord | <record><control><sourceid>jstor_uchic</sourceid><recordid>TN_cdi_uchicagopress_journals_664746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/664746</jstor_id><sourcerecordid>10.1086/664746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</originalsourceid><addsrcrecordid>eNqN0MtKw0AUBuBBFKxVnyF4w0107pl0V-qtUHGj6C5M5mJTYhJnErA-vVNTLAiCq4HDx3_-OQAcIniBoOCXnNOE8i0wQIykccKTl20wgJCgWGAqdsGe9wsIERJQDMBo3DSu_ijeZFvUVSQrHU21kWXx-T0YRc_zZdTOTXRVWGucqZSJ7mXbGuf3wY6VpTcH63cInm6uHyd38ezhdjoZz2LFIGpjlaQyoVpSmFPLMNZYQI4SyHQu8hzzVDFucyalpVQrYgThjBtNUxXGBCdkCM773FD0vTO-zd4Kr0xZysrUnc8QDN9lCBMR6NEvuqg7V4V2WcpJWA7FCp31SLnae2ds1rjwf7cMSdnqgll_wQBP12nSK1laJytV-B-NWSIII3RTsFPzQsnXunHG-83qPi5rtA305B80sOOeLXxbu7_6fQEcVpQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963522088</pqid></control><display><type>article</type><title>Approximation and Idealization: Why the Difference Matters</title><source>Jstor Complete Legacy</source><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Norton, John D.</creator><creatorcontrib>Norton, John D.</creatorcontrib><description>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</description><identifier>ISSN: 0031-8248</identifier><identifier>EISSN: 1539-767X</identifier><identifier>DOI: 10.1086/664746</identifier><identifier>CODEN: PHSCA6</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>Approximation ; Capsules ; Cylinders ; Determinism ; Difference ; Epistemology. Philosophy of science. Theory of knowledge ; Idealization ; Infinity ; Mathematical functions ; Philosophical thought ; Philosophy ; Philosophy of science ; Physics ; Property ; Renormalization group ; Renormalization group methods ; Statistical analysis ; System theory ; Thermodynamics</subject><ispartof>Philosophy of science, 2012-04, Vol.79 (2), p.207-232</ispartof><rights>Copyright 2012 by the Philosophy of Science Association. All rights reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Apr 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</citedby><cites>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25783534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Norton, John D.</creatorcontrib><title>Approximation and Idealization: Why the Difference Matters</title><title>Philosophy of science</title><description>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</description><subject>Approximation</subject><subject>Capsules</subject><subject>Cylinders</subject><subject>Determinism</subject><subject>Difference</subject><subject>Epistemology. Philosophy of science. Theory of knowledge</subject><subject>Idealization</subject><subject>Infinity</subject><subject>Mathematical functions</subject><subject>Philosophical thought</subject><subject>Philosophy</subject><subject>Philosophy of science</subject><subject>Physics</subject><subject>Property</subject><subject>Renormalization group</subject><subject>Renormalization group methods</subject><subject>Statistical analysis</subject><subject>System theory</subject><subject>Thermodynamics</subject><issn>0031-8248</issn><issn>1539-767X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0MtKw0AUBuBBFKxVnyF4w0107pl0V-qtUHGj6C5M5mJTYhJnErA-vVNTLAiCq4HDx3_-OQAcIniBoOCXnNOE8i0wQIykccKTl20wgJCgWGAqdsGe9wsIERJQDMBo3DSu_ijeZFvUVSQrHU21kWXx-T0YRc_zZdTOTXRVWGucqZSJ7mXbGuf3wY6VpTcH63cInm6uHyd38ezhdjoZz2LFIGpjlaQyoVpSmFPLMNZYQI4SyHQu8hzzVDFucyalpVQrYgThjBtNUxXGBCdkCM773FD0vTO-zd4Kr0xZysrUnc8QDN9lCBMR6NEvuqg7V4V2WcpJWA7FCp31SLnae2ds1rjwf7cMSdnqgll_wQBP12nSK1laJytV-B-NWSIII3RTsFPzQsnXunHG-83qPi5rtA305B80sOOeLXxbu7_6fQEcVpQA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Norton, John D.</creator><general>University of Chicago Press</general><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120401</creationdate><title>Approximation and Idealization: Why the Difference Matters</title><author>Norton, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Capsules</topic><topic>Cylinders</topic><topic>Determinism</topic><topic>Difference</topic><topic>Epistemology. Philosophy of science. Theory of knowledge</topic><topic>Idealization</topic><topic>Infinity</topic><topic>Mathematical functions</topic><topic>Philosophical thought</topic><topic>Philosophy</topic><topic>Philosophy of science</topic><topic>Physics</topic><topic>Property</topic><topic>Renormalization group</topic><topic>Renormalization group methods</topic><topic>Statistical analysis</topic><topic>System theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norton, John D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norton, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation and Idealization: Why the Difference Matters</atitle><jtitle>Philosophy of science</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>79</volume><issue>2</issue><spage>207</spage><epage>232</epage><pages>207-232</pages><issn>0031-8248</issn><eissn>1539-767X</eissn><coden>PHSCA6</coden><abstract>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/664746</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8248 |
ispartof | Philosophy of science, 2012-04, Vol.79 (2), p.207-232 |
issn | 0031-8248 1539-767X |
language | eng |
recordid | cdi_uchicagopress_journals_664746 |
source | Jstor Complete Legacy; Cambridge Journals - Connect here FIRST to enable access |
subjects | Approximation Capsules Cylinders Determinism Difference Epistemology. Philosophy of science. Theory of knowledge Idealization Infinity Mathematical functions Philosophical thought Philosophy Philosophy of science Physics Property Renormalization group Renormalization group methods Statistical analysis System theory Thermodynamics |
title | Approximation and Idealization: Why the Difference Matters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_uchic&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20and%20Idealization:%20Why%20the%20Difference%20Matters&rft.jtitle=Philosophy%20of%20science&rft.au=Norton,%20John%20D.&rft.date=2012-04-01&rft.volume=79&rft.issue=2&rft.spage=207&rft.epage=232&rft.pages=207-232&rft.issn=0031-8248&rft.eissn=1539-767X&rft.coden=PHSCA6&rft_id=info:doi/10.1086/664746&rft_dat=%3Cjstor_uchic%3E10.1086/664746%3C/jstor_uchic%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963522088&rft_id=info:pmid/&rft_jstor_id=10.1086/664746&rfr_iscdi=true |