Approximation and Idealization: Why the Difference Matters

It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophy of science 2012-04, Vol.79 (2), p.207-232
1. Verfasser: Norton, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 207
container_title Philosophy of science
container_volume 79
creator Norton, John D.
description It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.
doi_str_mv 10.1086/664746
format Article
fullrecord <record><control><sourceid>jstor_uchic</sourceid><recordid>TN_cdi_uchicagopress_journals_664746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/664746</jstor_id><sourcerecordid>10.1086/664746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</originalsourceid><addsrcrecordid>eNqN0MtKw0AUBuBBFKxVnyF4w0107pl0V-qtUHGj6C5M5mJTYhJnErA-vVNTLAiCq4HDx3_-OQAcIniBoOCXnNOE8i0wQIykccKTl20wgJCgWGAqdsGe9wsIERJQDMBo3DSu_ijeZFvUVSQrHU21kWXx-T0YRc_zZdTOTXRVWGucqZSJ7mXbGuf3wY6VpTcH63cInm6uHyd38ezhdjoZz2LFIGpjlaQyoVpSmFPLMNZYQI4SyHQu8hzzVDFucyalpVQrYgThjBtNUxXGBCdkCM773FD0vTO-zd4Kr0xZysrUnc8QDN9lCBMR6NEvuqg7V4V2WcpJWA7FCp31SLnae2ds1rjwf7cMSdnqgll_wQBP12nSK1laJytV-B-NWSIII3RTsFPzQsnXunHG-83qPi5rtA305B80sOOeLXxbu7_6fQEcVpQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963522088</pqid></control><display><type>article</type><title>Approximation and Idealization: Why the Difference Matters</title><source>Jstor Complete Legacy</source><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Norton, John D.</creator><creatorcontrib>Norton, John D.</creatorcontrib><description>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</description><identifier>ISSN: 0031-8248</identifier><identifier>EISSN: 1539-767X</identifier><identifier>DOI: 10.1086/664746</identifier><identifier>CODEN: PHSCA6</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>Approximation ; Capsules ; Cylinders ; Determinism ; Difference ; Epistemology. Philosophy of science. Theory of knowledge ; Idealization ; Infinity ; Mathematical functions ; Philosophical thought ; Philosophy ; Philosophy of science ; Physics ; Property ; Renormalization group ; Renormalization group methods ; Statistical analysis ; System theory ; Thermodynamics</subject><ispartof>Philosophy of science, 2012-04, Vol.79 (2), p.207-232</ispartof><rights>Copyright 2012 by the Philosophy of Science Association. All rights reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Apr 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</citedby><cites>FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25783534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Norton, John D.</creatorcontrib><title>Approximation and Idealization: Why the Difference Matters</title><title>Philosophy of science</title><description>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</description><subject>Approximation</subject><subject>Capsules</subject><subject>Cylinders</subject><subject>Determinism</subject><subject>Difference</subject><subject>Epistemology. Philosophy of science. Theory of knowledge</subject><subject>Idealization</subject><subject>Infinity</subject><subject>Mathematical functions</subject><subject>Philosophical thought</subject><subject>Philosophy</subject><subject>Philosophy of science</subject><subject>Physics</subject><subject>Property</subject><subject>Renormalization group</subject><subject>Renormalization group methods</subject><subject>Statistical analysis</subject><subject>System theory</subject><subject>Thermodynamics</subject><issn>0031-8248</issn><issn>1539-767X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0MtKw0AUBuBBFKxVnyF4w0107pl0V-qtUHGj6C5M5mJTYhJnErA-vVNTLAiCq4HDx3_-OQAcIniBoOCXnNOE8i0wQIykccKTl20wgJCgWGAqdsGe9wsIERJQDMBo3DSu_ijeZFvUVSQrHU21kWXx-T0YRc_zZdTOTXRVWGucqZSJ7mXbGuf3wY6VpTcH63cInm6uHyd38ezhdjoZz2LFIGpjlaQyoVpSmFPLMNZYQI4SyHQu8hzzVDFucyalpVQrYgThjBtNUxXGBCdkCM773FD0vTO-zd4Kr0xZysrUnc8QDN9lCBMR6NEvuqg7V4V2WcpJWA7FCp31SLnae2ds1rjwf7cMSdnqgll_wQBP12nSK1laJytV-B-NWSIII3RTsFPzQsnXunHG-83qPi5rtA305B80sOOeLXxbu7_6fQEcVpQA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Norton, John D.</creator><general>University of Chicago Press</general><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120401</creationdate><title>Approximation and Idealization: Why the Difference Matters</title><author>Norton, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c79a74da40b4f522d28061705db8bb269c56fb5aaf44dc3e83656ed49c6fb3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Capsules</topic><topic>Cylinders</topic><topic>Determinism</topic><topic>Difference</topic><topic>Epistemology. Philosophy of science. Theory of knowledge</topic><topic>Idealization</topic><topic>Infinity</topic><topic>Mathematical functions</topic><topic>Philosophical thought</topic><topic>Philosophy</topic><topic>Philosophy of science</topic><topic>Physics</topic><topic>Property</topic><topic>Renormalization group</topic><topic>Renormalization group methods</topic><topic>Statistical analysis</topic><topic>System theory</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norton, John D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norton, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation and Idealization: Why the Difference Matters</atitle><jtitle>Philosophy of science</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>79</volume><issue>2</issue><spage>207</spage><epage>232</epage><pages>207-232</pages><issn>0031-8248</issn><eissn>1539-767X</eissn><coden>PHSCA6</coden><abstract>It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected—even inconsistent—properties, familiar limit processes used in statistical physics can fail to provide idealizations but merely provide approximations.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/664746</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-8248
ispartof Philosophy of science, 2012-04, Vol.79 (2), p.207-232
issn 0031-8248
1539-767X
language eng
recordid cdi_uchicagopress_journals_664746
source Jstor Complete Legacy; Cambridge Journals - Connect here FIRST to enable access
subjects Approximation
Capsules
Cylinders
Determinism
Difference
Epistemology. Philosophy of science. Theory of knowledge
Idealization
Infinity
Mathematical functions
Philosophical thought
Philosophy
Philosophy of science
Physics
Property
Renormalization group
Renormalization group methods
Statistical analysis
System theory
Thermodynamics
title Approximation and Idealization: Why the Difference Matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_uchic&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20and%20Idealization:%20Why%20the%20Difference%20Matters&rft.jtitle=Philosophy%20of%20science&rft.au=Norton,%20John%20D.&rft.date=2012-04-01&rft.volume=79&rft.issue=2&rft.spage=207&rft.epage=232&rft.pages=207-232&rft.issn=0031-8248&rft.eissn=1539-767X&rft.coden=PHSCA6&rft_id=info:doi/10.1086/664746&rft_dat=%3Cjstor_uchic%3E10.1086/664746%3C/jstor_uchic%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963522088&rft_id=info:pmid/&rft_jstor_id=10.1086/664746&rfr_iscdi=true