Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits
Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in alloc...
Gespeichert in:
Veröffentlicht in: | The American naturalist 2003-01, Vol.161 (1), p.153-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | The American naturalist |
container_volume | 161 |
creator | Worley, Anne C. Houle, David Barrett, Spencer C. H. |
description | Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs. |
doi_str_mv | 10.1086/345461 |
format | Article |
fullrecord | <record><control><sourceid>jstor_uchic</sourceid><recordid>TN_cdi_uchicagopress_journals_345461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/345461</jstor_id><sourcerecordid>10.1086/345461</sourcerecordid><originalsourceid>FETCH-LOGICAL-j247t-48a09f20f2ed13b3cf2deaf8c04e760e04542d785ec68423730bd38c03b3ec713</originalsourceid><addsrcrecordid>eNqF0d9KwzAUBvAgis6pTyBSRLyrnvxpk16OMZ0wEGRelyw91Y6umUkr7M5H8Bl9EuM2FbzxKiTnx4HvCyEnFK4oqPSai0SkdIf0aMJlnHDGd0kPAHgMVMgDcuj9PFwzkSX75ICyNAGRZj3yMLSNx5cOG4M-smU0rtBpZ54ro-toUNfW6LayTVRaF7XPGI1ebd2tXwKeVCV-vL2PK99at4qmTletPyJ7pa49Hm_PPnm8GU2H43hyf3s3HEziOROyjYXSkJUMSoYF5TNuSlagLpUBgTIFhJCIFVIlaFIlGJccZgUP42DRSMr75HKzd-lsCODbfFF5g3WtG7SdzyWnAiCR_0Kq0owlmQjw_A-c2841IUROM5VSxRgEdLZF3WyBRb501UK7Vf7daQAXG9CtW3yyS4fe_67afFVgpxs2_yrvZw0HqZTK-CcrmYy1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198618220</pqid></control><display><type>article</type><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H.</creator><contributor>Peter D. Taylor</contributor><creatorcontrib>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H. ; Peter D. Taylor</creatorcontrib><description>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/345461</identifier><identifier>PMID: 12650469</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Animal behavior ; Animal Population Groups - genetics ; Animal Population Groups - physiology ; Animals ; Artificial selection ; Biological Evolution ; Biology ; Computer Simulation ; Ecological competition ; Energy Metabolism ; Evolution ; Evolutionary genetics ; Female animals ; Gametes ; Genetic Variation ; Genetics ; Models, Genetic ; Natural selection ; Phenotypic traits ; Quantitative traits ; Selection, Genetic</subject><ispartof>The American naturalist, 2003-01, Vol.161 (1), p.153-167</ispartof><rights>2003 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Jan 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12650469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peter D. Taylor</contributor><creatorcontrib>Worley, Anne C.</creatorcontrib><creatorcontrib>Houle, David</creatorcontrib><creatorcontrib>Barrett, Spencer C. H.</creatorcontrib><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</description><subject>Animal behavior</subject><subject>Animal Population Groups - genetics</subject><subject>Animal Population Groups - physiology</subject><subject>Animals</subject><subject>Artificial selection</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Ecological competition</subject><subject>Energy Metabolism</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Female animals</subject><subject>Gametes</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Models, Genetic</subject><subject>Natural selection</subject><subject>Phenotypic traits</subject><subject>Quantitative traits</subject><subject>Selection, Genetic</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0d9KwzAUBvAgis6pTyBSRLyrnvxpk16OMZ0wEGRelyw91Y6umUkr7M5H8Bl9EuM2FbzxKiTnx4HvCyEnFK4oqPSai0SkdIf0aMJlnHDGd0kPAHgMVMgDcuj9PFwzkSX75ICyNAGRZj3yMLSNx5cOG4M-smU0rtBpZ54ro-toUNfW6LayTVRaF7XPGI1ebd2tXwKeVCV-vL2PK99at4qmTletPyJ7pa49Hm_PPnm8GU2H43hyf3s3HEziOROyjYXSkJUMSoYF5TNuSlagLpUBgTIFhJCIFVIlaFIlGJccZgUP42DRSMr75HKzd-lsCODbfFF5g3WtG7SdzyWnAiCR_0Kq0owlmQjw_A-c2841IUROM5VSxRgEdLZF3WyBRb501UK7Vf7daQAXG9CtW3yyS4fe_67afFVgpxs2_yrvZw0HqZTK-CcrmYy1</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Worley, Anne C.</creator><creator>Houle, David</creator><creator>Barrett, Spencer C. H.</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><author>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j247t-48a09f20f2ed13b3cf2deaf8c04e760e04542d785ec68423730bd38c03b3ec713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal behavior</topic><topic>Animal Population Groups - genetics</topic><topic>Animal Population Groups - physiology</topic><topic>Animals</topic><topic>Artificial selection</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Ecological competition</topic><topic>Energy Metabolism</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Female animals</topic><topic>Gametes</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Models, Genetic</topic><topic>Natural selection</topic><topic>Phenotypic traits</topic><topic>Quantitative traits</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worley, Anne C.</creatorcontrib><creatorcontrib>Houle, David</creatorcontrib><creatorcontrib>Barrett, Spencer C. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worley, Anne C.</au><au>Houle, David</au><au>Barrett, Spencer C. H.</au><au>Peter D. Taylor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>161</volume><issue>1</issue><spage>153</spage><epage>167</epage><pages>153-167</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>12650469</pmid><doi>10.1086/345461</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2003-01, Vol.161 (1), p.153-167 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_uchicagopress_journals_345461 |
source | Jstor Complete Legacy; MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animal behavior Animal Population Groups - genetics Animal Population Groups - physiology Animals Artificial selection Biological Evolution Biology Computer Simulation Ecological competition Energy Metabolism Evolution Evolutionary genetics Female animals Gametes Genetic Variation Genetics Models, Genetic Natural selection Phenotypic traits Quantitative traits Selection, Genetic |
title | Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_uchic&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consequences%20of%20Hierarchical%20Allocation%20for%20the%20Evolution%20of%20Life%E2%80%90History%20Traits&rft.jtitle=The%20American%20naturalist&rft.au=Worley,%20Anne%C2%A0C.&rft.date=2003-01-01&rft.volume=161&rft.issue=1&rft.spage=153&rft.epage=167&rft.pages=153-167&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/345461&rft_dat=%3Cjstor_uchic%3E10.1086/345461%3C/jstor_uchic%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198618220&rft_id=info:pmid/12650469&rft_jstor_id=10.1086/345461&rfr_iscdi=true |