Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits

Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in alloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2003-01, Vol.161 (1), p.153-167
Hauptverfasser: Worley, Anne C., Houle, David, Barrett, Spencer C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 153
container_title The American naturalist
container_volume 161
creator Worley, Anne C.
Houle, David
Barrett, Spencer C. H.
description Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.
doi_str_mv 10.1086/345461
format Article
fullrecord <record><control><sourceid>jstor_uchic</sourceid><recordid>TN_cdi_uchicagopress_journals_345461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/345461</jstor_id><sourcerecordid>10.1086/345461</sourcerecordid><originalsourceid>FETCH-LOGICAL-j247t-48a09f20f2ed13b3cf2deaf8c04e760e04542d785ec68423730bd38c03b3ec713</originalsourceid><addsrcrecordid>eNqF0d9KwzAUBvAgis6pTyBSRLyrnvxpk16OMZ0wEGRelyw91Y6umUkr7M5H8Bl9EuM2FbzxKiTnx4HvCyEnFK4oqPSai0SkdIf0aMJlnHDGd0kPAHgMVMgDcuj9PFwzkSX75ICyNAGRZj3yMLSNx5cOG4M-smU0rtBpZ54ro-toUNfW6LayTVRaF7XPGI1ebd2tXwKeVCV-vL2PK99at4qmTletPyJ7pa49Hm_PPnm8GU2H43hyf3s3HEziOROyjYXSkJUMSoYF5TNuSlagLpUBgTIFhJCIFVIlaFIlGJccZgUP42DRSMr75HKzd-lsCODbfFF5g3WtG7SdzyWnAiCR_0Kq0owlmQjw_A-c2841IUROM5VSxRgEdLZF3WyBRb501UK7Vf7daQAXG9CtW3yyS4fe_67afFVgpxs2_yrvZw0HqZTK-CcrmYy1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198618220</pqid></control><display><type>article</type><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H.</creator><contributor>Peter D. Taylor</contributor><creatorcontrib>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H. ; Peter D. Taylor</creatorcontrib><description>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/345461</identifier><identifier>PMID: 12650469</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Animal behavior ; Animal Population Groups - genetics ; Animal Population Groups - physiology ; Animals ; Artificial selection ; Biological Evolution ; Biology ; Computer Simulation ; Ecological competition ; Energy Metabolism ; Evolution ; Evolutionary genetics ; Female animals ; Gametes ; Genetic Variation ; Genetics ; Models, Genetic ; Natural selection ; Phenotypic traits ; Quantitative traits ; Selection, Genetic</subject><ispartof>The American naturalist, 2003-01, Vol.161 (1), p.153-167</ispartof><rights>2003 by The University of Chicago.</rights><rights>Copyright University of Chicago, acting through its Press Jan 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12650469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Peter D. Taylor</contributor><creatorcontrib>Worley, Anne C.</creatorcontrib><creatorcontrib>Houle, David</creatorcontrib><creatorcontrib>Barrett, Spencer C. H.</creatorcontrib><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</description><subject>Animal behavior</subject><subject>Animal Population Groups - genetics</subject><subject>Animal Population Groups - physiology</subject><subject>Animals</subject><subject>Artificial selection</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Ecological competition</subject><subject>Energy Metabolism</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Female animals</subject><subject>Gametes</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Models, Genetic</subject><subject>Natural selection</subject><subject>Phenotypic traits</subject><subject>Quantitative traits</subject><subject>Selection, Genetic</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0d9KwzAUBvAgis6pTyBSRLyrnvxpk16OMZ0wEGRelyw91Y6umUkr7M5H8Bl9EuM2FbzxKiTnx4HvCyEnFK4oqPSai0SkdIf0aMJlnHDGd0kPAHgMVMgDcuj9PFwzkSX75ICyNAGRZj3yMLSNx5cOG4M-smU0rtBpZ54ro-toUNfW6LayTVRaF7XPGI1ebd2tXwKeVCV-vL2PK99at4qmTletPyJ7pa49Hm_PPnm8GU2H43hyf3s3HEziOROyjYXSkJUMSoYF5TNuSlagLpUBgTIFhJCIFVIlaFIlGJccZgUP42DRSMr75HKzd-lsCODbfFF5g3WtG7SdzyWnAiCR_0Kq0owlmQjw_A-c2841IUROM5VSxRgEdLZF3WyBRb501UK7Vf7daQAXG9CtW3yyS4fe_67afFVgpxs2_yrvZw0HqZTK-CcrmYy1</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Worley, Anne C.</creator><creator>Houle, David</creator><creator>Barrett, Spencer C. H.</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</title><author>Worley, Anne C. ; Houle, David ; Barrett, Spencer C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j247t-48a09f20f2ed13b3cf2deaf8c04e760e04542d785ec68423730bd38c03b3ec713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal behavior</topic><topic>Animal Population Groups - genetics</topic><topic>Animal Population Groups - physiology</topic><topic>Animals</topic><topic>Artificial selection</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Ecological competition</topic><topic>Energy Metabolism</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Female animals</topic><topic>Gametes</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Models, Genetic</topic><topic>Natural selection</topic><topic>Phenotypic traits</topic><topic>Quantitative traits</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worley, Anne C.</creatorcontrib><creatorcontrib>Houle, David</creatorcontrib><creatorcontrib>Barrett, Spencer C. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worley, Anne C.</au><au>Houle, David</au><au>Barrett, Spencer C. H.</au><au>Peter D. Taylor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>161</volume><issue>1</issue><spage>153</spage><epage>167</epage><pages>153-167</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative‐genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade‐offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade‐offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade‐offs. Thus, allocation hierarchies can profoundly affect life‐history evolution by causing traits to evolve in the opposite direction to that predicted by trade‐offs.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>12650469</pmid><doi>10.1086/345461</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2003-01, Vol.161 (1), p.153-167
issn 0003-0147
1537-5323
language eng
recordid cdi_uchicagopress_journals_345461
source Jstor Complete Legacy; MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Animal behavior
Animal Population Groups - genetics
Animal Population Groups - physiology
Animals
Artificial selection
Biological Evolution
Biology
Computer Simulation
Ecological competition
Energy Metabolism
Evolution
Evolutionary genetics
Female animals
Gametes
Genetic Variation
Genetics
Models, Genetic
Natural selection
Phenotypic traits
Quantitative traits
Selection, Genetic
title Consequences of Hierarchical Allocation for the Evolution of Life‐History Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_uchic&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consequences%20of%20Hierarchical%20Allocation%20for%20the%20Evolution%20of%20Life%E2%80%90History%20Traits&rft.jtitle=The%20American%20naturalist&rft.au=Worley,%20Anne%C2%A0C.&rft.date=2003-01-01&rft.volume=161&rft.issue=1&rft.spage=153&rft.epage=167&rft.pages=153-167&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/345461&rft_dat=%3Cjstor_uchic%3E10.1086/345461%3C/jstor_uchic%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198618220&rft_id=info:pmid/12650469&rft_jstor_id=10.1086/345461&rfr_iscdi=true