Rule-based Clustering for Gene Promoter Structure Discovery
Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expressi...
Gespeichert in:
Veröffentlicht in: | Methods of information in medicine 2009-01, Vol.48 (3), p.229-235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 3 |
container_start_page | 229 |
container_title | Methods of information in medicine |
container_volume | 48 |
creator | Curk, T. Petrovic, U. Shaulsky, G. Zupan, B. |
description | Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression. |
doi_str_mv | 10.3414/ME9225 |
format | Article |
fullrecord | <record><control><sourceid>proquest_thiem</sourceid><recordid>TN_cdi_thieme_journals_10_3414_ME9225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746082856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-dba70a88793ca4e19623d16f71d2f6e1236c5289873626b448aee364231dde653</originalsourceid><addsrcrecordid>eNrFkdtqFEEQhgdRzBr1EWRu1KvRPsx09yIIssYoRBQP4F3R21Oz02Fmeu3DLtk38cpXtcMuSSTgrdDQUPXx81VVUTym5AWvaf3y48mcseZOMWMNpZUkzY-7xYwQJirKJDkqHoRwTghRitT3iyM650o2hM2KV1_SgNVSB2zLxZBCRG-nVdk5X57ihOVn70aXi-XX6JOJyWP51gbjNugvHhb3Oj0EfHT4j4vv706-Ld5XZ59OPyzenFVGKBmrdqkl0UrJOTe6RjoXjLdUdJK2rBNIGRemYWquJBdMLOtaaUQuasZp26Jo-HHxep-7TssRW4NT9HqAtbej9hfgtIW_O5PtYeU2wGQtaqlywPNDgHc_E4YIY54Bh0FP6FKAjBHFVCMy-eyfpJCMqSx8DRrvQvDYXelQApcXgf1FMvjkpvw1djhBBp7ugdhbHBHOXfJTXuftoF97Lphex6gT-quwPsY1bLdbuNFr8fKNeqV3dkJIuEQfrOkj7NDGDHrbRZxAww5GjL1rAxg35VIMoL3p7SbPr6dW-xZsCAkhrNHYvN9RTykYb9cRKM2O2e33_3YTgt_ygtC7bRYYB_4HUu4PMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67228236</pqid></control><display><type>article</type><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><source>MEDLINE</source><source>Thieme Connect Journals</source><creator>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</creator><creatorcontrib>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</creatorcontrib><description>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</description><identifier>ISSN: 0026-1270</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.3414/ME9225</identifier><identifier>PMID: 19387502</identifier><language>eng</language><publisher>Germany: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Algorithms ; Gene Expression - genetics ; gene expression analysis ; Gene Expression Regulation - genetics ; Machine Learning ; Original Articles ; Promoter analysis ; Promoter Regions, Genetic - genetics ; rule-based clustering ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Validation Studies as Topic</subject><ispartof>Methods of information in medicine, 2009-01, Vol.48 (3), p.229-235</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.schattauer.de/typo3temp/pics/cover-663_34ca803176.jpg</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.3414/ME9225.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.3414/ME9225$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>230,314,776,780,881,3005,27903,27904,54537,54538</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19387502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curk, T.</creatorcontrib><creatorcontrib>Petrovic, U.</creatorcontrib><creatorcontrib>Shaulsky, G.</creatorcontrib><creatorcontrib>Zupan, B.</creatorcontrib><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</description><subject>Algorithms</subject><subject>Gene Expression - genetics</subject><subject>gene expression analysis</subject><subject>Gene Expression Regulation - genetics</subject><subject>Machine Learning</subject><subject>Original Articles</subject><subject>Promoter analysis</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>rule-based clustering</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Validation Studies as Topic</subject><issn>0026-1270</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNrFkdtqFEEQhgdRzBr1EWRu1KvRPsx09yIIssYoRBQP4F3R21Oz02Fmeu3DLtk38cpXtcMuSSTgrdDQUPXx81VVUTym5AWvaf3y48mcseZOMWMNpZUkzY-7xYwQJirKJDkqHoRwTghRitT3iyM650o2hM2KV1_SgNVSB2zLxZBCRG-nVdk5X57ihOVn70aXi-XX6JOJyWP51gbjNugvHhb3Oj0EfHT4j4vv706-Ld5XZ59OPyzenFVGKBmrdqkl0UrJOTe6RjoXjLdUdJK2rBNIGRemYWquJBdMLOtaaUQuasZp26Jo-HHxep-7TssRW4NT9HqAtbej9hfgtIW_O5PtYeU2wGQtaqlywPNDgHc_E4YIY54Bh0FP6FKAjBHFVCMy-eyfpJCMqSx8DRrvQvDYXelQApcXgf1FMvjkpvw1djhBBp7ugdhbHBHOXfJTXuftoF97Lphex6gT-quwPsY1bLdbuNFr8fKNeqV3dkJIuEQfrOkj7NDGDHrbRZxAww5GjL1rAxg35VIMoL3p7SbPr6dW-xZsCAkhrNHYvN9RTykYb9cRKM2O2e33_3YTgt_ygtC7bRYYB_4HUu4PMA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Curk, T.</creator><creator>Petrovic, U.</creator><creator>Shaulsky, G.</creator><creator>Zupan, B.</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><general>Schattauer GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><author>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-dba70a88793ca4e19623d16f71d2f6e1236c5289873626b448aee364231dde653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Gene Expression - genetics</topic><topic>gene expression analysis</topic><topic>Gene Expression Regulation - genetics</topic><topic>Machine Learning</topic><topic>Original Articles</topic><topic>Promoter analysis</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>rule-based clustering</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Validation Studies as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curk, T.</creatorcontrib><creatorcontrib>Petrovic, U.</creatorcontrib><creatorcontrib>Shaulsky, G.</creatorcontrib><creatorcontrib>Zupan, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curk, T.</au><au>Petrovic, U.</au><au>Shaulsky, G.</au><au>Zupan, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rule-based Clustering for Gene Promoter Structure Discovery</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>48</volume><issue>3</issue><spage>229</spage><epage>235</epage><pages>229-235</pages><issn>0026-1270</issn><eissn>2511-705X</eissn><abstract>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</abstract><cop>Germany</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>19387502</pmid><doi>10.3414/ME9225</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1270 |
ispartof | Methods of information in medicine, 2009-01, Vol.48 (3), p.229-235 |
issn | 0026-1270 2511-705X |
language | eng |
recordid | cdi_thieme_journals_10_3414_ME9225 |
source | MEDLINE; Thieme Connect Journals |
subjects | Algorithms Gene Expression - genetics gene expression analysis Gene Expression Regulation - genetics Machine Learning Original Articles Promoter analysis Promoter Regions, Genetic - genetics rule-based clustering Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Validation Studies as Topic |
title | Rule-based Clustering for Gene Promoter Structure Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_thiem&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rule-based%20Clustering%20for%20Gene%20Promoter%20Structure%20Discovery&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Curk,%20T.&rft.date=2009-01-01&rft.volume=48&rft.issue=3&rft.spage=229&rft.epage=235&rft.pages=229-235&rft.issn=0026-1270&rft.eissn=2511-705X&rft_id=info:doi/10.3414/ME9225&rft_dat=%3Cproquest_thiem%3E746082856%3C/proquest_thiem%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67228236&rft_id=info:pmid/19387502&rfr_iscdi=true |