Rule-based Clustering for Gene Promoter Structure Discovery

Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods of information in medicine 2009-01, Vol.48 (3), p.229-235
Hauptverfasser: Curk, T., Petrovic, U., Shaulsky, G., Zupan, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 3
container_start_page 229
container_title Methods of information in medicine
container_volume 48
creator Curk, T.
Petrovic, U.
Shaulsky, G.
Zupan, B.
description Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.
doi_str_mv 10.3414/ME9225
format Article
fullrecord <record><control><sourceid>proquest_thiem</sourceid><recordid>TN_cdi_thieme_journals_10_3414_ME9225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746082856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c687t-dba70a88793ca4e19623d16f71d2f6e1236c5289873626b448aee364231dde653</originalsourceid><addsrcrecordid>eNrFkdtqFEEQhgdRzBr1EWRu1KvRPsx09yIIssYoRBQP4F3R21Oz02Fmeu3DLtk38cpXtcMuSSTgrdDQUPXx81VVUTym5AWvaf3y48mcseZOMWMNpZUkzY-7xYwQJirKJDkqHoRwTghRitT3iyM650o2hM2KV1_SgNVSB2zLxZBCRG-nVdk5X57ihOVn70aXi-XX6JOJyWP51gbjNugvHhb3Oj0EfHT4j4vv706-Ld5XZ59OPyzenFVGKBmrdqkl0UrJOTe6RjoXjLdUdJK2rBNIGRemYWquJBdMLOtaaUQuasZp26Jo-HHxep-7TssRW4NT9HqAtbej9hfgtIW_O5PtYeU2wGQtaqlywPNDgHc_E4YIY54Bh0FP6FKAjBHFVCMy-eyfpJCMqSx8DRrvQvDYXelQApcXgf1FMvjkpvw1djhBBp7ugdhbHBHOXfJTXuftoF97Lphex6gT-quwPsY1bLdbuNFr8fKNeqV3dkJIuEQfrOkj7NDGDHrbRZxAww5GjL1rAxg35VIMoL3p7SbPr6dW-xZsCAkhrNHYvN9RTykYb9cRKM2O2e33_3YTgt_ygtC7bRYYB_4HUu4PMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67228236</pqid></control><display><type>article</type><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><source>MEDLINE</source><source>Thieme Connect Journals</source><creator>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</creator><creatorcontrib>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</creatorcontrib><description>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</description><identifier>ISSN: 0026-1270</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.3414/ME9225</identifier><identifier>PMID: 19387502</identifier><language>eng</language><publisher>Germany: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Algorithms ; Gene Expression - genetics ; gene expression analysis ; Gene Expression Regulation - genetics ; Machine Learning ; Original Articles ; Promoter analysis ; Promoter Regions, Genetic - genetics ; rule-based clustering ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Validation Studies as Topic</subject><ispartof>Methods of information in medicine, 2009-01, Vol.48 (3), p.229-235</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.schattauer.de/typo3temp/pics/cover-663_34ca803176.jpg</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.3414/ME9225.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.3414/ME9225$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>230,314,776,780,881,3005,27903,27904,54537,54538</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19387502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curk, T.</creatorcontrib><creatorcontrib>Petrovic, U.</creatorcontrib><creatorcontrib>Shaulsky, G.</creatorcontrib><creatorcontrib>Zupan, B.</creatorcontrib><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</description><subject>Algorithms</subject><subject>Gene Expression - genetics</subject><subject>gene expression analysis</subject><subject>Gene Expression Regulation - genetics</subject><subject>Machine Learning</subject><subject>Original Articles</subject><subject>Promoter analysis</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>rule-based clustering</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Validation Studies as Topic</subject><issn>0026-1270</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNrFkdtqFEEQhgdRzBr1EWRu1KvRPsx09yIIssYoRBQP4F3R21Oz02Fmeu3DLtk38cpXtcMuSSTgrdDQUPXx81VVUTym5AWvaf3y48mcseZOMWMNpZUkzY-7xYwQJirKJDkqHoRwTghRitT3iyM650o2hM2KV1_SgNVSB2zLxZBCRG-nVdk5X57ihOVn70aXi-XX6JOJyWP51gbjNugvHhb3Oj0EfHT4j4vv706-Ld5XZ59OPyzenFVGKBmrdqkl0UrJOTe6RjoXjLdUdJK2rBNIGRemYWquJBdMLOtaaUQuasZp26Jo-HHxep-7TssRW4NT9HqAtbej9hfgtIW_O5PtYeU2wGQtaqlywPNDgHc_E4YIY54Bh0FP6FKAjBHFVCMy-eyfpJCMqSx8DRrvQvDYXelQApcXgf1FMvjkpvw1djhBBp7ugdhbHBHOXfJTXuftoF97Lphex6gT-quwPsY1bLdbuNFr8fKNeqV3dkJIuEQfrOkj7NDGDHrbRZxAww5GjL1rAxg35VIMoL3p7SbPr6dW-xZsCAkhrNHYvN9RTykYb9cRKM2O2e33_3YTgt_ygtC7bRYYB_4HUu4PMA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Curk, T.</creator><creator>Petrovic, U.</creator><creator>Shaulsky, G.</creator><creator>Zupan, B.</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><general>Schattauer GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Rule-based Clustering for Gene Promoter Structure Discovery</title><author>Curk, T. ; Petrovic, U. ; Shaulsky, G. ; Zupan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c687t-dba70a88793ca4e19623d16f71d2f6e1236c5289873626b448aee364231dde653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Gene Expression - genetics</topic><topic>gene expression analysis</topic><topic>Gene Expression Regulation - genetics</topic><topic>Machine Learning</topic><topic>Original Articles</topic><topic>Promoter analysis</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>rule-based clustering</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Validation Studies as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curk, T.</creatorcontrib><creatorcontrib>Petrovic, U.</creatorcontrib><creatorcontrib>Shaulsky, G.</creatorcontrib><creatorcontrib>Zupan, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curk, T.</au><au>Petrovic, U.</au><au>Shaulsky, G.</au><au>Zupan, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rule-based Clustering for Gene Promoter Structure Discovery</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>48</volume><issue>3</issue><spage>229</spage><epage>235</epage><pages>229-235</pages><issn>0026-1270</issn><eissn>2511-705X</eissn><abstract>Background: The genetic cellular response to internal and external changes is determined by the sequence and structure of gene-regulatory promoter regions. Objectives: Using data on gene-regulatory elements (i.e., either putative or known transcription factor binding sites) and data on gene expression profiles we can discover structural elements in promoter regions and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly assist us in experiment planning. The principal obstacle for such approaches is the combinatorial explosion in different combinations of promoter elements to be examined. Methods: Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, rule-based clustering method that uses gene expression similarity to guide the search for informative structures in promoters, thus exploring only the most promising parts of the vast and expressively rich rule-space. Results: We present the utility of the method in the analysis of gene expression data on budding yeast S. cerevisiae where cells were induced to proliferate peroxisomes. Conclusions: We demonstrate that the proposed approach is able to infer informative relations uncovering relatively complex structures in gene promoter regions that regulate gene expression.</abstract><cop>Germany</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>19387502</pmid><doi>10.3414/ME9225</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-1270
ispartof Methods of information in medicine, 2009-01, Vol.48 (3), p.229-235
issn 0026-1270
2511-705X
language eng
recordid cdi_thieme_journals_10_3414_ME9225
source MEDLINE; Thieme Connect Journals
subjects Algorithms
Gene Expression - genetics
gene expression analysis
Gene Expression Regulation - genetics
Machine Learning
Original Articles
Promoter analysis
Promoter Regions, Genetic - genetics
rule-based clustering
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Validation Studies as Topic
title Rule-based Clustering for Gene Promoter Structure Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_thiem&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rule-based%20Clustering%20for%20Gene%20Promoter%20Structure%20Discovery&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Curk,%20T.&rft.date=2009-01-01&rft.volume=48&rft.issue=3&rft.spage=229&rft.epage=235&rft.pages=229-235&rft.issn=0026-1270&rft.eissn=2511-705X&rft_id=info:doi/10.3414/ME9225&rft_dat=%3Cproquest_thiem%3E746082856%3C/proquest_thiem%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67228236&rft_id=info:pmid/19387502&rfr_iscdi=true