Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications
Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of e...
Gespeichert in:
Veröffentlicht in: | Yearbook of medical informatics 2019-08, Vol.28 (1), p.128-134 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 1 |
container_start_page | 128 |
container_title | Yearbook of medical informatics |
container_volume | 28 |
creator | Magrabi, Farah Ammenwerth, Elske McNair, Jytte Brender De Keizer, Nicolet F. Hyppönen, Hannele Nykänen, Pirkko Rigby, Michael Scott, Philip J. Vehko, Tuulikki Wong, Zoie Shui-Yee Georgiou, Andrew |
description | Summary
Objectives
: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method
: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results
: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion
: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application. |
doi_str_mv | 10.1055/s-0039-1677903 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_thiem</sourceid><recordid>TN_cdi_thieme_journals_10_1055_s_0039_1677903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31022752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</originalsourceid><addsrcrecordid>eNo1kE9Lw0AQxRdRbKm9epT9AtHZ_423EqsGCgrqedlsN-2WzSZkU8Fvb2rrXGZg3hve_BC6JXBPQIiHlAGwPCNSqRzYBZpSJnkGAuglmkLOWcYVVxM0T2kPY0lCOFXXaMIIUKoEnaJm2Q--9tabgMs4uBD81kXrsI-4CD56Oy6enPXJtxF_HLqu7YdHXOxMCC5uXcJ12-PVtwkHM_i4xcsSm7jB772xw5-5bLowDsPoTzfoqjYhufm5z9DX8-qzeM3Wby9lsVxnlhHBMkUYzQ2RFKirDCe52AgGhjKqpHGkthXjOVAQFZFc1YuF5BakqRRjasFpxWbo7nS3O1SN2-iu943pf_T_36MgOwmGnXeN0_v20McxkSagj2h10ke0-oyW_QIRQmfI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Thieme Connect Journals Open Access</source><creator>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</creator><creatorcontrib>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</creatorcontrib><description>Summary
Objectives
: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method
: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results
: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion
: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</description><identifier>ISSN: 0943-4747</identifier><identifier>EISSN: 2364-0502</identifier><identifier>DOI: 10.1055/s-0039-1677903</identifier><identifier>PMID: 31022752</identifier><language>eng</language><publisher>Stuttgart: Georg Thieme Verlag KG</publisher><subject>Artificial Intelligence ; Decision Support Systems, Clinical ; Evaluation Studies as Topic ; Machine Learning ; Program Evaluation - methods ; Section 5: Decision Support</subject><ispartof>Yearbook of medical informatics, 2019-08, Vol.28 (1), p.128-134</ispartof><rights>Georg Thieme Verlag KG Stuttgart.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0039-1677903.pdf$$EPDF$$P50$$Gthieme$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/s-0039-1677903$$EHTML$$P50$$Gthieme$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,20872,27903,27904,54565,54593</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magrabi, Farah</creatorcontrib><creatorcontrib>Ammenwerth, Elske</creatorcontrib><creatorcontrib>McNair, Jytte Brender</creatorcontrib><creatorcontrib>De Keizer, Nicolet F.</creatorcontrib><creatorcontrib>Hyppönen, Hannele</creatorcontrib><creatorcontrib>Nykänen, Pirkko</creatorcontrib><creatorcontrib>Rigby, Michael</creatorcontrib><creatorcontrib>Scott, Philip J.</creatorcontrib><creatorcontrib>Vehko, Tuulikki</creatorcontrib><creatorcontrib>Wong, Zoie Shui-Yee</creatorcontrib><creatorcontrib>Georgiou, Andrew</creatorcontrib><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><title>Yearbook of medical informatics</title><addtitle>Yearb Med Inform</addtitle><description>Summary
Objectives
: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method
: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results
: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion
: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</description><subject>Artificial Intelligence</subject><subject>Decision Support Systems, Clinical</subject><subject>Evaluation Studies as Topic</subject><subject>Machine Learning</subject><subject>Program Evaluation - methods</subject><subject>Section 5: Decision Support</subject><issn>0943-4747</issn><issn>2364-0502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0U6</sourceid><sourceid>EIF</sourceid><recordid>eNo1kE9Lw0AQxRdRbKm9epT9AtHZ_423EqsGCgrqedlsN-2WzSZkU8Fvb2rrXGZg3hve_BC6JXBPQIiHlAGwPCNSqRzYBZpSJnkGAuglmkLOWcYVVxM0T2kPY0lCOFXXaMIIUKoEnaJm2Q--9tabgMs4uBD81kXrsI-4CD56Oy6enPXJtxF_HLqu7YdHXOxMCC5uXcJ12-PVtwkHM_i4xcsSm7jB772xw5-5bLowDsPoTzfoqjYhufm5z9DX8-qzeM3Wby9lsVxnlhHBMkUYzQ2RFKirDCe52AgGhjKqpHGkthXjOVAQFZFc1YuF5BakqRRjasFpxWbo7nS3O1SN2-iu943pf_T_36MgOwmGnXeN0_v20McxkSagj2h10ke0-oyW_QIRQmfI</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Magrabi, Farah</creator><creator>Ammenwerth, Elske</creator><creator>McNair, Jytte Brender</creator><creator>De Keizer, Nicolet F.</creator><creator>Hyppönen, Hannele</creator><creator>Nykänen, Pirkko</creator><creator>Rigby, Michael</creator><creator>Scott, Philip J.</creator><creator>Vehko, Tuulikki</creator><creator>Wong, Zoie Shui-Yee</creator><creator>Georgiou, Andrew</creator><general>Georg Thieme Verlag KG</general><scope>0U6</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201908</creationdate><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><author>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Decision Support Systems, Clinical</topic><topic>Evaluation Studies as Topic</topic><topic>Machine Learning</topic><topic>Program Evaluation - methods</topic><topic>Section 5: Decision Support</topic><toplevel>online_resources</toplevel><creatorcontrib>Magrabi, Farah</creatorcontrib><creatorcontrib>Ammenwerth, Elske</creatorcontrib><creatorcontrib>McNair, Jytte Brender</creatorcontrib><creatorcontrib>De Keizer, Nicolet F.</creatorcontrib><creatorcontrib>Hyppönen, Hannele</creatorcontrib><creatorcontrib>Nykänen, Pirkko</creatorcontrib><creatorcontrib>Rigby, Michael</creatorcontrib><creatorcontrib>Scott, Philip J.</creatorcontrib><creatorcontrib>Vehko, Tuulikki</creatorcontrib><creatorcontrib>Wong, Zoie Shui-Yee</creatorcontrib><creatorcontrib>Georgiou, Andrew</creatorcontrib><collection>Thieme Connect Journals Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Yearbook of medical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magrabi, Farah</au><au>Ammenwerth, Elske</au><au>McNair, Jytte Brender</au><au>De Keizer, Nicolet F.</au><au>Hyppönen, Hannele</au><au>Nykänen, Pirkko</au><au>Rigby, Michael</au><au>Scott, Philip J.</au><au>Vehko, Tuulikki</au><au>Wong, Zoie Shui-Yee</au><au>Georgiou, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</atitle><jtitle>Yearbook of medical informatics</jtitle><addtitle>Yearb Med Inform</addtitle><date>2019-08</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>128</spage><epage>134</epage><pages>128-134</pages><issn>0943-4747</issn><eissn>2364-0502</eissn><abstract>Summary
Objectives
: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method
: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results
: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion
: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</abstract><cop>Stuttgart</cop><pub>Georg Thieme Verlag KG</pub><pmid>31022752</pmid><doi>10.1055/s-0039-1677903</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4747 |
ispartof | Yearbook of medical informatics, 2019-08, Vol.28 (1), p.128-134 |
issn | 0943-4747 2364-0502 |
language | eng |
recordid | cdi_thieme_journals_10_1055_s_0039_1677903 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Thieme Connect Journals Open Access |
subjects | Artificial Intelligence Decision Support Systems, Clinical Evaluation Studies as Topic Machine Learning Program Evaluation - methods Section 5: Decision Support |
title | Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_thiem&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Clinical%20Decision%20Support:%20Challenges%20for%20Evaluating%20AI%20and%20Practical%20Implications&rft.jtitle=Yearbook%20of%20medical%20informatics&rft.au=Magrabi,%20Farah&rft.date=2019-08&rft.volume=28&rft.issue=1&rft.spage=128&rft.epage=134&rft.pages=128-134&rft.issn=0943-4747&rft.eissn=2364-0502&rft_id=info:doi/10.1055/s-0039-1677903&rft_dat=%3Cpubmed_thiem%3E31022752%3C/pubmed_thiem%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31022752&rfr_iscdi=true |