Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications

Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Yearbook of medical informatics 2019-08, Vol.28 (1), p.128-134
Hauptverfasser: Magrabi, Farah, Ammenwerth, Elske, McNair, Jytte Brender, De Keizer, Nicolet F., Hyppönen, Hannele, Nykänen, Pirkko, Rigby, Michael, Scott, Philip J., Vehko, Tuulikki, Wong, Zoie Shui-Yee, Georgiou, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 128
container_title Yearbook of medical informatics
container_volume 28
creator Magrabi, Farah
Ammenwerth, Elske
McNair, Jytte Brender
De Keizer, Nicolet F.
Hyppönen, Hannele
Nykänen, Pirkko
Rigby, Michael
Scott, Philip J.
Vehko, Tuulikki
Wong, Zoie Shui-Yee
Georgiou, Andrew
description Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.
doi_str_mv 10.1055/s-0039-1677903
format Article
fullrecord <record><control><sourceid>pubmed_thiem</sourceid><recordid>TN_cdi_thieme_journals_10_1055_s_0039_1677903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31022752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</originalsourceid><addsrcrecordid>eNo1kE9Lw0AQxRdRbKm9epT9AtHZ_423EqsGCgrqedlsN-2WzSZkU8Fvb2rrXGZg3hve_BC6JXBPQIiHlAGwPCNSqRzYBZpSJnkGAuglmkLOWcYVVxM0T2kPY0lCOFXXaMIIUKoEnaJm2Q--9tabgMs4uBD81kXrsI-4CD56Oy6enPXJtxF_HLqu7YdHXOxMCC5uXcJ12-PVtwkHM_i4xcsSm7jB772xw5-5bLowDsPoTzfoqjYhufm5z9DX8-qzeM3Wby9lsVxnlhHBMkUYzQ2RFKirDCe52AgGhjKqpHGkthXjOVAQFZFc1YuF5BakqRRjasFpxWbo7nS3O1SN2-iu943pf_T_36MgOwmGnXeN0_v20McxkSagj2h10ke0-oyW_QIRQmfI</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Thieme Connect Journals Open Access</source><creator>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</creator><creatorcontrib>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</creatorcontrib><description>Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</description><identifier>ISSN: 0943-4747</identifier><identifier>EISSN: 2364-0502</identifier><identifier>DOI: 10.1055/s-0039-1677903</identifier><identifier>PMID: 31022752</identifier><language>eng</language><publisher>Stuttgart: Georg Thieme Verlag KG</publisher><subject>Artificial Intelligence ; Decision Support Systems, Clinical ; Evaluation Studies as Topic ; Machine Learning ; Program Evaluation - methods ; Section 5: Decision Support</subject><ispartof>Yearbook of medical informatics, 2019-08, Vol.28 (1), p.128-134</ispartof><rights>Georg Thieme Verlag KG Stuttgart.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0039-1677903.pdf$$EPDF$$P50$$Gthieme$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/s-0039-1677903$$EHTML$$P50$$Gthieme$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,20872,27903,27904,54565,54593</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magrabi, Farah</creatorcontrib><creatorcontrib>Ammenwerth, Elske</creatorcontrib><creatorcontrib>McNair, Jytte Brender</creatorcontrib><creatorcontrib>De Keizer, Nicolet F.</creatorcontrib><creatorcontrib>Hyppönen, Hannele</creatorcontrib><creatorcontrib>Nykänen, Pirkko</creatorcontrib><creatorcontrib>Rigby, Michael</creatorcontrib><creatorcontrib>Scott, Philip J.</creatorcontrib><creatorcontrib>Vehko, Tuulikki</creatorcontrib><creatorcontrib>Wong, Zoie Shui-Yee</creatorcontrib><creatorcontrib>Georgiou, Andrew</creatorcontrib><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><title>Yearbook of medical informatics</title><addtitle>Yearb Med Inform</addtitle><description>Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</description><subject>Artificial Intelligence</subject><subject>Decision Support Systems, Clinical</subject><subject>Evaluation Studies as Topic</subject><subject>Machine Learning</subject><subject>Program Evaluation - methods</subject><subject>Section 5: Decision Support</subject><issn>0943-4747</issn><issn>2364-0502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0U6</sourceid><sourceid>EIF</sourceid><recordid>eNo1kE9Lw0AQxRdRbKm9epT9AtHZ_423EqsGCgrqedlsN-2WzSZkU8Fvb2rrXGZg3hve_BC6JXBPQIiHlAGwPCNSqRzYBZpSJnkGAuglmkLOWcYVVxM0T2kPY0lCOFXXaMIIUKoEnaJm2Q--9tabgMs4uBD81kXrsI-4CD56Oy6enPXJtxF_HLqu7YdHXOxMCC5uXcJ12-PVtwkHM_i4xcsSm7jB772xw5-5bLowDsPoTzfoqjYhufm5z9DX8-qzeM3Wby9lsVxnlhHBMkUYzQ2RFKirDCe52AgGhjKqpHGkthXjOVAQFZFc1YuF5BakqRRjasFpxWbo7nS3O1SN2-iu943pf_T_36MgOwmGnXeN0_v20McxkSagj2h10ke0-oyW_QIRQmfI</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Magrabi, Farah</creator><creator>Ammenwerth, Elske</creator><creator>McNair, Jytte Brender</creator><creator>De Keizer, Nicolet F.</creator><creator>Hyppönen, Hannele</creator><creator>Nykänen, Pirkko</creator><creator>Rigby, Michael</creator><creator>Scott, Philip J.</creator><creator>Vehko, Tuulikki</creator><creator>Wong, Zoie Shui-Yee</creator><creator>Georgiou, Andrew</creator><general>Georg Thieme Verlag KG</general><scope>0U6</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>201908</creationdate><title>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</title><author>Magrabi, Farah ; Ammenwerth, Elske ; McNair, Jytte Brender ; De Keizer, Nicolet F. ; Hyppönen, Hannele ; Nykänen, Pirkko ; Rigby, Michael ; Scott, Philip J. ; Vehko, Tuulikki ; Wong, Zoie Shui-Yee ; Georgiou, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3153-71329a16202eba4195d530a23276ae1fcb3490205b1647f8864c06ab7337842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Decision Support Systems, Clinical</topic><topic>Evaluation Studies as Topic</topic><topic>Machine Learning</topic><topic>Program Evaluation - methods</topic><topic>Section 5: Decision Support</topic><toplevel>online_resources</toplevel><creatorcontrib>Magrabi, Farah</creatorcontrib><creatorcontrib>Ammenwerth, Elske</creatorcontrib><creatorcontrib>McNair, Jytte Brender</creatorcontrib><creatorcontrib>De Keizer, Nicolet F.</creatorcontrib><creatorcontrib>Hyppönen, Hannele</creatorcontrib><creatorcontrib>Nykänen, Pirkko</creatorcontrib><creatorcontrib>Rigby, Michael</creatorcontrib><creatorcontrib>Scott, Philip J.</creatorcontrib><creatorcontrib>Vehko, Tuulikki</creatorcontrib><creatorcontrib>Wong, Zoie Shui-Yee</creatorcontrib><creatorcontrib>Georgiou, Andrew</creatorcontrib><collection>Thieme Connect Journals Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Yearbook of medical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magrabi, Farah</au><au>Ammenwerth, Elske</au><au>McNair, Jytte Brender</au><au>De Keizer, Nicolet F.</au><au>Hyppönen, Hannele</au><au>Nykänen, Pirkko</au><au>Rigby, Michael</au><au>Scott, Philip J.</au><au>Vehko, Tuulikki</au><au>Wong, Zoie Shui-Yee</au><au>Georgiou, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications</atitle><jtitle>Yearbook of medical informatics</jtitle><addtitle>Yearb Med Inform</addtitle><date>2019-08</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>128</spage><epage>134</epage><pages>128-134</pages><issn>0943-4747</issn><eissn>2364-0502</eissn><abstract>Summary Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.</abstract><cop>Stuttgart</cop><pub>Georg Thieme Verlag KG</pub><pmid>31022752</pmid><doi>10.1055/s-0039-1677903</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4747
ispartof Yearbook of medical informatics, 2019-08, Vol.28 (1), p.128-134
issn 0943-4747
2364-0502
language eng
recordid cdi_thieme_journals_10_1055_s_0039_1677903
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Thieme Connect Journals Open Access
subjects Artificial Intelligence
Decision Support Systems, Clinical
Evaluation Studies as Topic
Machine Learning
Program Evaluation - methods
Section 5: Decision Support
title Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_thiem&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Clinical%20Decision%20Support:%20Challenges%20for%20Evaluating%20AI%20and%20Practical%20Implications&rft.jtitle=Yearbook%20of%20medical%20informatics&rft.au=Magrabi,%20Farah&rft.date=2019-08&rft.volume=28&rft.issue=1&rft.spage=128&rft.epage=134&rft.pages=128-134&rft.issn=0943-4747&rft.eissn=2364-0502&rft_id=info:doi/10.1055/s-0039-1677903&rft_dat=%3Cpubmed_thiem%3E31022752%3C/pubmed_thiem%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31022752&rfr_iscdi=true