Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell genomics 2024-07, Vol.4 (7), p.100590, Article 100590
Hauptverfasser: Grochowski, Christopher M., Bengtsson, Jesse D., Du, Haowei, Gandhi, Mira, Lun, Ming Yin, Mehaffey, Michele G., Park, KyungHee, Höps, Wolfram, Benito, Eva, Hasenfeld, Patrick, Korbel, Jan O., Mahmoud, Medhat, Paulin, Luis F., Jhangiani, Shalini N., Hwang, James Paul, Bhamidipati, Sravya V., Muzny, Donna M., Fatih, Jawid M., Gibbs, Richard A., Pendleton, Matthew, Harrington, Eoghan, Juul, Sissel, Lindstrand, Anna, Sedlazeck, Fritz J., Pehlivan, Davut, Lupski, James R., Carvalho, Claudia M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 100590
container_title Cell genomics
container_volume 4
creator Grochowski, Christopher M.
Bengtsson, Jesse D.
Du, Haowei
Gandhi, Mira
Lun, Ming Yin
Mehaffey, Michele G.
Park, KyungHee
Höps, Wolfram
Benito, Eva
Hasenfeld, Patrick
Korbel, Jan O.
Mahmoud, Medhat
Paulin, Luis F.
Jhangiani, Shalini N.
Hwang, James Paul
Bhamidipati, Sravya V.
Muzny, Donna M.
Fatih, Jawid M.
Gibbs, Richard A.
Pendleton, Matthew
Harrington, Eoghan
Juul, Sissel
Lindstrand, Anna
Sedlazeck, Fritz J.
Pehlivan, Davut
Lupski, James R.
Carvalho, Claudia M.B.
description The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2–5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci. [Display omitted] •Inverted triplications cause genomic disorders through alterations in gene dosage•Pairs of homologous inverted repeats generate varying structural haplotypes•Breakpoint junction mapping reveals template switches within repeats•Combining methodologies enhance the analysis of complex genomic aberrations Analysis of 24 individuals harboring inverted triplications show surprising structural variant haplotype diversity and underlie the importance of inverted repeats acting as points of genomic instability leading to genomic disorders.
doi_str_mv 10.1016/j.xgen.2024.100590
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_874104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666979X24001745</els_id><sourcerecordid>3071282638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-e18ac69873d67fdb637e91bffed2f536490c689c25bac4def9bcc6047075ba613</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhU1paUKSP9BF0bIb3-ph6wGFUkKaBALdpNCdkOVxolvbupVkp5f8-cj4NiSbriTOfGc0mlMUHwjeEEz45-3m7x2MG4pplQVcK_ymOKac81IJ9evti_tRcRbjFmNMZQYFe18cMamwZEIeF4_X4wwhQYtScLveWZOcHyPqfBiy2OyRSxCyOANKMOx6kwDFB5fsPUSUJ1iKWUlhsmkKpkezCc6MCbXZEqJLe2TSAvrB2SxGH1oIqPfWnRbvOtNHODucJ8XP7xe351flzY_L6_NvN6WtqjqVQKSxXEnBWi66tuFMgCJN10FLu5rxSmHLpbK0boytWuhUYy3HlcAiK5ywk6Jc-8YH2E2N3gU3mLDX3jh9kH7nG2gpKoKrzH9d-VzJS7AwpvyxV7bXldHd6zs_a0KoYrWkucOnQ4fg_0wQkx5ctND3ZgQ_Rc2wIFRSzmRG6Yra4GMM0D2_Q7BektZbvSStl6T1mnQ2fXw54bPlX64Z-LICkPc6Owg6WgejhdYFsEm33v2v_xMUv8AW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071282638</pqid></control><display><type>article</type><title>Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Grochowski, Christopher M. ; Bengtsson, Jesse D. ; Du, Haowei ; Gandhi, Mira ; Lun, Ming Yin ; Mehaffey, Michele G. ; Park, KyungHee ; Höps, Wolfram ; Benito, Eva ; Hasenfeld, Patrick ; Korbel, Jan O. ; Mahmoud, Medhat ; Paulin, Luis F. ; Jhangiani, Shalini N. ; Hwang, James Paul ; Bhamidipati, Sravya V. ; Muzny, Donna M. ; Fatih, Jawid M. ; Gibbs, Richard A. ; Pendleton, Matthew ; Harrington, Eoghan ; Juul, Sissel ; Lindstrand, Anna ; Sedlazeck, Fritz J. ; Pehlivan, Davut ; Lupski, James R. ; Carvalho, Claudia M.B.</creator><creatorcontrib>Grochowski, Christopher M. ; Bengtsson, Jesse D. ; Du, Haowei ; Gandhi, Mira ; Lun, Ming Yin ; Mehaffey, Michele G. ; Park, KyungHee ; Höps, Wolfram ; Benito, Eva ; Hasenfeld, Patrick ; Korbel, Jan O. ; Mahmoud, Medhat ; Paulin, Luis F. ; Jhangiani, Shalini N. ; Hwang, James Paul ; Bhamidipati, Sravya V. ; Muzny, Donna M. ; Fatih, Jawid M. ; Gibbs, Richard A. ; Pendleton, Matthew ; Harrington, Eoghan ; Juul, Sissel ; Lindstrand, Anna ; Sedlazeck, Fritz J. ; Pehlivan, Davut ; Lupski, James R. ; Carvalho, Claudia M.B.</creatorcontrib><description>The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2–5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci. [Display omitted] •Inverted triplications cause genomic disorders through alterations in gene dosage•Pairs of homologous inverted repeats generate varying structural haplotypes•Breakpoint junction mapping reveals template switches within repeats•Combining methodologies enhance the analysis of complex genomic aberrations Analysis of 24 individuals harboring inverted triplications show surprising structural variant haplotype diversity and underlie the importance of inverted repeats acting as points of genomic instability leading to genomic disorders.</description><identifier>ISSN: 2666-979X</identifier><identifier>EISSN: 2666-979X</identifier><identifier>DOI: 10.1016/j.xgen.2024.100590</identifier><identifier>PMID: 38908378</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>break-induced replication ; Comparative Genomic Hybridization ; copy-number variant ; Gene Duplication - genetics ; Genome, Human - genetics ; Genomic Structural Variation - genetics ; Haplotypes - genetics ; Humans ; inversions ; MECP2 duplication syndrome ; Mendelian diseases ; MMBIR ; recombination ; segmental duplication ; template switching ; Xq28</subject><ispartof>Cell genomics, 2024-07, Vol.4 (7), p.100590, Article 100590</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c445t-e18ac69873d67fdb637e91bffed2f536490c689c25bac4def9bcc6047075ba613</cites><orcidid>0000-0001-9052-1587 ; 0000-0002-3884-7720 ; 0000-0001-9907-9246 ; 0000-0002-7465-4459 ; 0000-0003-2567-3773 ; 0000-0002-2090-298X ; 0000-0001-5788-0270 ; 0000-0003-0806-5602 ; 0000-0001-6040-2691 ; 0000-0002-2553-4231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293582/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293582/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38908378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:238908378$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Grochowski, Christopher M.</creatorcontrib><creatorcontrib>Bengtsson, Jesse D.</creatorcontrib><creatorcontrib>Du, Haowei</creatorcontrib><creatorcontrib>Gandhi, Mira</creatorcontrib><creatorcontrib>Lun, Ming Yin</creatorcontrib><creatorcontrib>Mehaffey, Michele G.</creatorcontrib><creatorcontrib>Park, KyungHee</creatorcontrib><creatorcontrib>Höps, Wolfram</creatorcontrib><creatorcontrib>Benito, Eva</creatorcontrib><creatorcontrib>Hasenfeld, Patrick</creatorcontrib><creatorcontrib>Korbel, Jan O.</creatorcontrib><creatorcontrib>Mahmoud, Medhat</creatorcontrib><creatorcontrib>Paulin, Luis F.</creatorcontrib><creatorcontrib>Jhangiani, Shalini N.</creatorcontrib><creatorcontrib>Hwang, James Paul</creatorcontrib><creatorcontrib>Bhamidipati, Sravya V.</creatorcontrib><creatorcontrib>Muzny, Donna M.</creatorcontrib><creatorcontrib>Fatih, Jawid M.</creatorcontrib><creatorcontrib>Gibbs, Richard A.</creatorcontrib><creatorcontrib>Pendleton, Matthew</creatorcontrib><creatorcontrib>Harrington, Eoghan</creatorcontrib><creatorcontrib>Juul, Sissel</creatorcontrib><creatorcontrib>Lindstrand, Anna</creatorcontrib><creatorcontrib>Sedlazeck, Fritz J.</creatorcontrib><creatorcontrib>Pehlivan, Davut</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Carvalho, Claudia M.B.</creatorcontrib><title>Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci</title><title>Cell genomics</title><addtitle>Cell Genom</addtitle><description>The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2–5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci. [Display omitted] •Inverted triplications cause genomic disorders through alterations in gene dosage•Pairs of homologous inverted repeats generate varying structural haplotypes•Breakpoint junction mapping reveals template switches within repeats•Combining methodologies enhance the analysis of complex genomic aberrations Analysis of 24 individuals harboring inverted triplications show surprising structural variant haplotype diversity and underlie the importance of inverted repeats acting as points of genomic instability leading to genomic disorders.</description><subject>break-induced replication</subject><subject>Comparative Genomic Hybridization</subject><subject>copy-number variant</subject><subject>Gene Duplication - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomic Structural Variation - genetics</subject><subject>Haplotypes - genetics</subject><subject>Humans</subject><subject>inversions</subject><subject>MECP2 duplication syndrome</subject><subject>Mendelian diseases</subject><subject>MMBIR</subject><subject>recombination</subject><subject>segmental duplication</subject><subject>template switching</subject><subject>Xq28</subject><issn>2666-979X</issn><issn>2666-979X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kUtr3TAQhU1paUKSP9BF0bIb3-ph6wGFUkKaBALdpNCdkOVxolvbupVkp5f8-cj4NiSbriTOfGc0mlMUHwjeEEz45-3m7x2MG4pplQVcK_ymOKac81IJ9evti_tRcRbjFmNMZQYFe18cMamwZEIeF4_X4wwhQYtScLveWZOcHyPqfBiy2OyRSxCyOANKMOx6kwDFB5fsPUSUJ1iKWUlhsmkKpkezCc6MCbXZEqJLe2TSAvrB2SxGH1oIqPfWnRbvOtNHODucJ8XP7xe351flzY_L6_NvN6WtqjqVQKSxXEnBWi66tuFMgCJN10FLu5rxSmHLpbK0boytWuhUYy3HlcAiK5ywk6Jc-8YH2E2N3gU3mLDX3jh9kH7nG2gpKoKrzH9d-VzJS7AwpvyxV7bXldHd6zs_a0KoYrWkucOnQ4fg_0wQkx5ctND3ZgQ_Rc2wIFRSzmRG6Yra4GMM0D2_Q7BektZbvSStl6T1mnQ2fXw54bPlX64Z-LICkPc6Owg6WgejhdYFsEm33v2v_xMUv8AW</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Grochowski, Christopher M.</creator><creator>Bengtsson, Jesse D.</creator><creator>Du, Haowei</creator><creator>Gandhi, Mira</creator><creator>Lun, Ming Yin</creator><creator>Mehaffey, Michele G.</creator><creator>Park, KyungHee</creator><creator>Höps, Wolfram</creator><creator>Benito, Eva</creator><creator>Hasenfeld, Patrick</creator><creator>Korbel, Jan O.</creator><creator>Mahmoud, Medhat</creator><creator>Paulin, Luis F.</creator><creator>Jhangiani, Shalini N.</creator><creator>Hwang, James Paul</creator><creator>Bhamidipati, Sravya V.</creator><creator>Muzny, Donna M.</creator><creator>Fatih, Jawid M.</creator><creator>Gibbs, Richard A.</creator><creator>Pendleton, Matthew</creator><creator>Harrington, Eoghan</creator><creator>Juul, Sissel</creator><creator>Lindstrand, Anna</creator><creator>Sedlazeck, Fritz J.</creator><creator>Pehlivan, Davut</creator><creator>Lupski, James R.</creator><creator>Carvalho, Claudia M.B.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9052-1587</orcidid><orcidid>https://orcid.org/0000-0002-3884-7720</orcidid><orcidid>https://orcid.org/0000-0001-9907-9246</orcidid><orcidid>https://orcid.org/0000-0002-7465-4459</orcidid><orcidid>https://orcid.org/0000-0003-2567-3773</orcidid><orcidid>https://orcid.org/0000-0002-2090-298X</orcidid><orcidid>https://orcid.org/0000-0001-5788-0270</orcidid><orcidid>https://orcid.org/0000-0003-0806-5602</orcidid><orcidid>https://orcid.org/0000-0001-6040-2691</orcidid><orcidid>https://orcid.org/0000-0002-2553-4231</orcidid></search><sort><creationdate>20240710</creationdate><title>Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci</title><author>Grochowski, Christopher M. ; Bengtsson, Jesse D. ; Du, Haowei ; Gandhi, Mira ; Lun, Ming Yin ; Mehaffey, Michele G. ; Park, KyungHee ; Höps, Wolfram ; Benito, Eva ; Hasenfeld, Patrick ; Korbel, Jan O. ; Mahmoud, Medhat ; Paulin, Luis F. ; Jhangiani, Shalini N. ; Hwang, James Paul ; Bhamidipati, Sravya V. ; Muzny, Donna M. ; Fatih, Jawid M. ; Gibbs, Richard A. ; Pendleton, Matthew ; Harrington, Eoghan ; Juul, Sissel ; Lindstrand, Anna ; Sedlazeck, Fritz J. ; Pehlivan, Davut ; Lupski, James R. ; Carvalho, Claudia M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-e18ac69873d67fdb637e91bffed2f536490c689c25bac4def9bcc6047075ba613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>break-induced replication</topic><topic>Comparative Genomic Hybridization</topic><topic>copy-number variant</topic><topic>Gene Duplication - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomic Structural Variation - genetics</topic><topic>Haplotypes - genetics</topic><topic>Humans</topic><topic>inversions</topic><topic>MECP2 duplication syndrome</topic><topic>Mendelian diseases</topic><topic>MMBIR</topic><topic>recombination</topic><topic>segmental duplication</topic><topic>template switching</topic><topic>Xq28</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grochowski, Christopher M.</creatorcontrib><creatorcontrib>Bengtsson, Jesse D.</creatorcontrib><creatorcontrib>Du, Haowei</creatorcontrib><creatorcontrib>Gandhi, Mira</creatorcontrib><creatorcontrib>Lun, Ming Yin</creatorcontrib><creatorcontrib>Mehaffey, Michele G.</creatorcontrib><creatorcontrib>Park, KyungHee</creatorcontrib><creatorcontrib>Höps, Wolfram</creatorcontrib><creatorcontrib>Benito, Eva</creatorcontrib><creatorcontrib>Hasenfeld, Patrick</creatorcontrib><creatorcontrib>Korbel, Jan O.</creatorcontrib><creatorcontrib>Mahmoud, Medhat</creatorcontrib><creatorcontrib>Paulin, Luis F.</creatorcontrib><creatorcontrib>Jhangiani, Shalini N.</creatorcontrib><creatorcontrib>Hwang, James Paul</creatorcontrib><creatorcontrib>Bhamidipati, Sravya V.</creatorcontrib><creatorcontrib>Muzny, Donna M.</creatorcontrib><creatorcontrib>Fatih, Jawid M.</creatorcontrib><creatorcontrib>Gibbs, Richard A.</creatorcontrib><creatorcontrib>Pendleton, Matthew</creatorcontrib><creatorcontrib>Harrington, Eoghan</creatorcontrib><creatorcontrib>Juul, Sissel</creatorcontrib><creatorcontrib>Lindstrand, Anna</creatorcontrib><creatorcontrib>Sedlazeck, Fritz J.</creatorcontrib><creatorcontrib>Pehlivan, Davut</creatorcontrib><creatorcontrib>Lupski, James R.</creatorcontrib><creatorcontrib>Carvalho, Claudia M.B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Cell genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grochowski, Christopher M.</au><au>Bengtsson, Jesse D.</au><au>Du, Haowei</au><au>Gandhi, Mira</au><au>Lun, Ming Yin</au><au>Mehaffey, Michele G.</au><au>Park, KyungHee</au><au>Höps, Wolfram</au><au>Benito, Eva</au><au>Hasenfeld, Patrick</au><au>Korbel, Jan O.</au><au>Mahmoud, Medhat</au><au>Paulin, Luis F.</au><au>Jhangiani, Shalini N.</au><au>Hwang, James Paul</au><au>Bhamidipati, Sravya V.</au><au>Muzny, Donna M.</au><au>Fatih, Jawid M.</au><au>Gibbs, Richard A.</au><au>Pendleton, Matthew</au><au>Harrington, Eoghan</au><au>Juul, Sissel</au><au>Lindstrand, Anna</au><au>Sedlazeck, Fritz J.</au><au>Pehlivan, Davut</au><au>Lupski, James R.</au><au>Carvalho, Claudia M.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci</atitle><jtitle>Cell genomics</jtitle><addtitle>Cell Genom</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>4</volume><issue>7</issue><spage>100590</spage><pages>100590-</pages><artnum>100590</artnum><issn>2666-979X</issn><eissn>2666-979X</eissn><abstract>The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2–5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci. [Display omitted] •Inverted triplications cause genomic disorders through alterations in gene dosage•Pairs of homologous inverted repeats generate varying structural haplotypes•Breakpoint junction mapping reveals template switches within repeats•Combining methodologies enhance the analysis of complex genomic aberrations Analysis of 24 individuals harboring inverted triplications show surprising structural variant haplotype diversity and underlie the importance of inverted repeats acting as points of genomic instability leading to genomic disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38908378</pmid><doi>10.1016/j.xgen.2024.100590</doi><orcidid>https://orcid.org/0000-0001-9052-1587</orcidid><orcidid>https://orcid.org/0000-0002-3884-7720</orcidid><orcidid>https://orcid.org/0000-0001-9907-9246</orcidid><orcidid>https://orcid.org/0000-0002-7465-4459</orcidid><orcidid>https://orcid.org/0000-0003-2567-3773</orcidid><orcidid>https://orcid.org/0000-0002-2090-298X</orcidid><orcidid>https://orcid.org/0000-0001-5788-0270</orcidid><orcidid>https://orcid.org/0000-0003-0806-5602</orcidid><orcidid>https://orcid.org/0000-0001-6040-2691</orcidid><orcidid>https://orcid.org/0000-0002-2553-4231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-979X
ispartof Cell genomics, 2024-07, Vol.4 (7), p.100590, Article 100590
issn 2666-979X
2666-979X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_874104
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online
subjects break-induced replication
Comparative Genomic Hybridization
copy-number variant
Gene Duplication - genetics
Genome, Human - genetics
Genomic Structural Variation - genetics
Haplotypes - genetics
Humans
inversions
MECP2 duplication syndrome
Mendelian diseases
MMBIR
recombination
segmental duplication
template switching
Xq28
title Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverted%20triplications%20formed%20by%20iterative%20template%20switches%20generate%20structural%20variant%20diversity%20at%20genomic%20disorder%20loci&rft.jtitle=Cell%20genomics&rft.au=Grochowski,%20Christopher%20M.&rft.date=2024-07-10&rft.volume=4&rft.issue=7&rft.spage=100590&rft.pages=100590-&rft.artnum=100590&rft.issn=2666-979X&rft.eissn=2666-979X&rft_id=info:doi/10.1016/j.xgen.2024.100590&rft_dat=%3Cproquest_swepu%3E3071282638%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071282638&rft_id=info:pmid/38908378&rft_els_id=S2666979X24001745&rfr_iscdi=true