Analogue tuning of particle focusing in elasto-inertial flow
We report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulu...
Gespeichert in:
Veröffentlicht in: | Meccanica (Milan) 2021, Vol.56 (7), p.1739-1749 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1749 |
---|---|
container_issue | 7 |
container_start_page | 1739 |
container_title | Meccanica (Milan) |
container_volume | 56 |
creator | Banerjee, I. Rosti, M. E. Kumar, T. Brandt, L. Russom, A. |
description | We report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications. |
doi_str_mv | 10.1007/s11012-021-01329-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_872797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546623225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-2c8bb250465c198f7a9335a933fcc388159e1a593abd95db4a1ed88b490f39483</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhC0EEqXwApwicTZ47TixJS5V-ZUqcQGulpM4IW2Ig50I0afHJYWe6MW21t_MrnYQOgdyCYSkVx6AAMWEAibAqMTrAzQBnlIsk1gcogkhlOMk5vwYnXi_JCTICJ-g61mrG1sNJuqHtm6ryJZRp11f542JSpsPflOs28g02vcW160Jn7qJysZ-nqKjUjfenG3vKXq5u32eP-DF0_3jfLbAOWesxzQXWUY5iROegxRlqiVjfHOUec6EAC4NaC6ZzgrJiyzWYAohsliSkslYsCnCo6__NN2Qqc7V79p9KatrtS2twssokdJUpoGX__Kds8VO9CuEOIGEUbG_1039OlPWVWrVvylGUgoQ-IuRD8Yfg_G9WtrBhaV6RXmcJJRRygNFRyp31ntnyj9fIGqToBoTVCFB9ZOgWgcR244S4LYybme9R_UN6gKfaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546623225</pqid></control><display><type>article</type><title>Analogue tuning of particle focusing in elasto-inertial flow</title><source>SpringerLink Journals</source><source>SWEPUB Freely available online</source><creator>Banerjee, I. ; Rosti, M. E. ; Kumar, T. ; Brandt, L. ; Russom, A.</creator><creatorcontrib>Banerjee, I. ; Rosti, M. E. ; Kumar, T. ; Brandt, L. ; Russom, A.</creatorcontrib><description>We report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications.</description><identifier>ISSN: 0025-6455</identifier><identifier>ISSN: 1572-9648</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-021-01329-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analog tuning ; Automotive Engineering ; Circular cross-sections ; Civil Engineering ; Classical Mechanics ; Computational fluid dynamics ; Cross-sections ; Direct numerical simulation ; Dynamic stability ; Elasticity ; Elasto-inertial ; Engineering ; Finite-Size particles ; Flow velocity ; Fluid flow ; Focusing ; Immersed boundary methods ; Inertia ; Mathematical models ; Mechanical Engineering ; Medicin och hälsovetenskap ; Micro-capillaries ; Microchannels ; Microfluidics ; Newtonian fluids ; Non Newtonian flow ; Non Newtonian fluids ; Non Newtonian liquids ; Numerical models ; Particle behaviours ; Particle focusing ; Particle focussing ; Particle size analysis ; Reynolds number ; Screening ; Simulation ; Square cross section ; Stability analysis ; Turbulent flow ; Viscoelasticity ; Weissenberg number</subject><ispartof>Meccanica (Milan), 2021, Vol.56 (7), p.1739-1749</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-2c8bb250465c198f7a9335a933fcc388159e1a593abd95db4a1ed88b490f39483</citedby><cites>FETCH-LOGICAL-c533t-2c8bb250465c198f7a9335a933fcc388159e1a593abd95db4a1ed88b490f39483</cites><orcidid>0000-0002-4346-4732 ; 0000-0003-0956-2002 ; 0000-0002-9004-2292 ; 0000-0001-9869-7181 ; 0000-0002-0242-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-021-01329-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-021-01329-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-307211$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:146163288$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, I.</creatorcontrib><creatorcontrib>Rosti, M. E.</creatorcontrib><creatorcontrib>Kumar, T.</creatorcontrib><creatorcontrib>Brandt, L.</creatorcontrib><creatorcontrib>Russom, A.</creatorcontrib><title>Analogue tuning of particle focusing in elasto-inertial flow</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>We report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications.</description><subject>Analog tuning</subject><subject>Automotive Engineering</subject><subject>Circular cross-sections</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Cross-sections</subject><subject>Direct numerical simulation</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Elasto-inertial</subject><subject>Engineering</subject><subject>Finite-Size particles</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Focusing</subject><subject>Immersed boundary methods</subject><subject>Inertia</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Medicin och hälsovetenskap</subject><subject>Micro-capillaries</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Newtonian fluids</subject><subject>Non Newtonian flow</subject><subject>Non Newtonian fluids</subject><subject>Non Newtonian liquids</subject><subject>Numerical models</subject><subject>Particle behaviours</subject><subject>Particle focusing</subject><subject>Particle focussing</subject><subject>Particle size analysis</subject><subject>Reynolds number</subject><subject>Screening</subject><subject>Simulation</subject><subject>Square cross section</subject><subject>Stability analysis</subject><subject>Turbulent flow</subject><subject>Viscoelasticity</subject><subject>Weissenberg number</subject><issn>0025-6455</issn><issn>1572-9648</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>D8T</sourceid><recordid>eNp9kc1OwzAQhC0EEqXwApwicTZ47TixJS5V-ZUqcQGulpM4IW2Ig50I0afHJYWe6MW21t_MrnYQOgdyCYSkVx6AAMWEAibAqMTrAzQBnlIsk1gcogkhlOMk5vwYnXi_JCTICJ-g61mrG1sNJuqHtm6ryJZRp11f542JSpsPflOs28g02vcW160Jn7qJysZ-nqKjUjfenG3vKXq5u32eP-DF0_3jfLbAOWesxzQXWUY5iROegxRlqiVjfHOUec6EAC4NaC6ZzgrJiyzWYAohsliSkslYsCnCo6__NN2Qqc7V79p9KatrtS2twssokdJUpoGX__Kds8VO9CuEOIGEUbG_1039OlPWVWrVvylGUgoQ-IuRD8Yfg_G9WtrBhaV6RXmcJJRRygNFRyp31ntnyj9fIGqToBoTVCFB9ZOgWgcR244S4LYybme9R_UN6gKfaQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Banerjee, I.</creator><creator>Rosti, M. E.</creator><creator>Kumar, T.</creator><creator>Brandt, L.</creator><creator>Russom, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4346-4732</orcidid><orcidid>https://orcid.org/0000-0003-0956-2002</orcidid><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0001-9869-7181</orcidid><orcidid>https://orcid.org/0000-0002-0242-358X</orcidid></search><sort><creationdate>2021</creationdate><title>Analogue tuning of particle focusing in elasto-inertial flow</title><author>Banerjee, I. ; Rosti, M. E. ; Kumar, T. ; Brandt, L. ; Russom, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-2c8bb250465c198f7a9335a933fcc388159e1a593abd95db4a1ed88b490f39483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analog tuning</topic><topic>Automotive Engineering</topic><topic>Circular cross-sections</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Cross-sections</topic><topic>Direct numerical simulation</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Elasto-inertial</topic><topic>Engineering</topic><topic>Finite-Size particles</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Focusing</topic><topic>Immersed boundary methods</topic><topic>Inertia</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Medicin och hälsovetenskap</topic><topic>Micro-capillaries</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Newtonian fluids</topic><topic>Non Newtonian flow</topic><topic>Non Newtonian fluids</topic><topic>Non Newtonian liquids</topic><topic>Numerical models</topic><topic>Particle behaviours</topic><topic>Particle focusing</topic><topic>Particle focussing</topic><topic>Particle size analysis</topic><topic>Reynolds number</topic><topic>Screening</topic><topic>Simulation</topic><topic>Square cross section</topic><topic>Stability analysis</topic><topic>Turbulent flow</topic><topic>Viscoelasticity</topic><topic>Weissenberg number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, I.</creatorcontrib><creatorcontrib>Rosti, M. E.</creatorcontrib><creatorcontrib>Kumar, T.</creatorcontrib><creatorcontrib>Brandt, L.</creatorcontrib><creatorcontrib>Russom, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, I.</au><au>Rosti, M. E.</au><au>Kumar, T.</au><au>Brandt, L.</au><au>Russom, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analogue tuning of particle focusing in elasto-inertial flow</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2021</date><risdate>2021</risdate><volume>56</volume><issue>7</issue><spage>1739</spage><epage>1749</epage><pages>1739-1749</pages><issn>0025-6455</issn><issn>1572-9648</issn><eissn>1572-9648</eissn><abstract>We report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-021-01329-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4346-4732</orcidid><orcidid>https://orcid.org/0000-0003-0956-2002</orcidid><orcidid>https://orcid.org/0000-0002-9004-2292</orcidid><orcidid>https://orcid.org/0000-0001-9869-7181</orcidid><orcidid>https://orcid.org/0000-0002-0242-358X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6455 |
ispartof | Meccanica (Milan), 2021, Vol.56 (7), p.1739-1749 |
issn | 0025-6455 1572-9648 1572-9648 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_872797 |
source | SpringerLink Journals; SWEPUB Freely available online |
subjects | Analog tuning Automotive Engineering Circular cross-sections Civil Engineering Classical Mechanics Computational fluid dynamics Cross-sections Direct numerical simulation Dynamic stability Elasticity Elasto-inertial Engineering Finite-Size particles Flow velocity Fluid flow Focusing Immersed boundary methods Inertia Mathematical models Mechanical Engineering Medicin och hälsovetenskap Micro-capillaries Microchannels Microfluidics Newtonian fluids Non Newtonian flow Non Newtonian fluids Non Newtonian liquids Numerical models Particle behaviours Particle focusing Particle focussing Particle size analysis Reynolds number Screening Simulation Square cross section Stability analysis Turbulent flow Viscoelasticity Weissenberg number |
title | Analogue tuning of particle focusing in elasto-inertial flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analogue%20tuning%20of%20particle%20focusing%20in%20elasto-inertial%20flow&rft.jtitle=Meccanica%20(Milan)&rft.au=Banerjee,%20I.&rft.date=2021&rft.volume=56&rft.issue=7&rft.spage=1739&rft.epage=1749&rft.pages=1739-1749&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-021-01329-z&rft_dat=%3Cproquest_swepu%3E2546623225%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546623225&rft_id=info:pmid/&rfr_iscdi=true |