Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning

Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2021-01, Vol.12 (1), p.191-210
Hauptverfasser: Jadhav, Suyog, Acuña, Sebastian, Opstad, Ida S, Singh Ahluwalia, Balpreet, Agarwal, Krishna, Prasad, Dilip K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 1
container_start_page 191
container_title Biomedical optics express
container_volume 12
creator Jadhav, Suyog
Acuña, Sebastian
Opstad, Ida S
Singh Ahluwalia, Balpreet
Agarwal, Krishna
Prasad, Dilip K
description Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.
doi_str_mv 10.1364/BOE.410617
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_867363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497083044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</originalsourceid><addsrcrecordid>eNpVkU1vFSEUhonR2KZ24w9QlsZkKp8DbEzapn4kTbrRNWGYwy06F67A1PTfi7m3TcuGA-c5Ly95EXpLyRnlo_h0cXN1JigZqXqBjhmV46CIli-f1EfotNZfpC8hFOH6NTrifJSGKHmMpvPSIDjfcIFtvnMLjglvSl7TjFtZ2y2eIUQfITUcltW31bWYUx0mV2HGyaVcfd7d47h1G6h4rTFt-gzs8AKupH56g14Ft1Q4Pewn6OeXqx-X34brm6_fL8-vBy8EaQNjXkqQM9MKmDMhkGmcgU2GmW7aBDpRFqQ0io4avB81VdII6R2jbtLC8BM07HXrX9itk92V7qnc2-yiPVz97hVYPSo-8s5_3vO9s4XZ9y8Wtzwbe95J8dZu8p1V2hhJRRd4vxfwJdYWk025OEsJ4coyIjTtxIfDEyX_WaE2u43Vw7K4BHmtlgnTE-I9mI5-fBDLtRYIj0Yosf-Ttj1pu0-6w--eWn9EH3Ll_wDG0qRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497083044</pqid></control><display><type>article</type><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</creator><creatorcontrib>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</creatorcontrib><description>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.410617</identifier><identifier>PMID: 33659075</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Electromagnetism, acoustics, optics: 434 ; Elektromagnetisme, akustikk, optikk: 434 ; Fysikk: 430 ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Physics: 430 ; VDP</subject><ispartof>Biomedical optics express, 2021-01, Vol.12 (1), p.191-210</ispartof><rights>2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2020 Optical Society of America under the terms of the 2020 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</citedby><cites>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</cites><orcidid>0000-0002-3693-6973 ; 0000-0003-4462-4600 ; 0000-0001-6968-578X ; 0000-0003-3299-4292 ; 0000-0001-7841-6952 ; 0000-0001-6894-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899514/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899514/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,26566,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33659075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145570834$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jadhav, Suyog</creatorcontrib><creatorcontrib>Acuña, Sebastian</creatorcontrib><creatorcontrib>Opstad, Ida S</creatorcontrib><creatorcontrib>Singh Ahluwalia, Balpreet</creatorcontrib><creatorcontrib>Agarwal, Krishna</creatorcontrib><creatorcontrib>Prasad, Dilip K</creatorcontrib><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</description><subject>Electromagnetism, acoustics, optics: 434</subject><subject>Elektromagnetisme, akustikk, optikk: 434</subject><subject>Fysikk: 430</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Physics: 430</subject><subject>VDP</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNpVkU1vFSEUhonR2KZ24w9QlsZkKp8DbEzapn4kTbrRNWGYwy06F67A1PTfi7m3TcuGA-c5Ly95EXpLyRnlo_h0cXN1JigZqXqBjhmV46CIli-f1EfotNZfpC8hFOH6NTrifJSGKHmMpvPSIDjfcIFtvnMLjglvSl7TjFtZ2y2eIUQfITUcltW31bWYUx0mV2HGyaVcfd7d47h1G6h4rTFt-gzs8AKupH56g14Ft1Q4Pewn6OeXqx-X34brm6_fL8-vBy8EaQNjXkqQM9MKmDMhkGmcgU2GmW7aBDpRFqQ0io4avB81VdII6R2jbtLC8BM07HXrX9itk92V7qnc2-yiPVz97hVYPSo-8s5_3vO9s4XZ9y8Wtzwbe95J8dZu8p1V2hhJRRd4vxfwJdYWk025OEsJ4coyIjTtxIfDEyX_WaE2u43Vw7K4BHmtlgnTE-I9mI5-fBDLtRYIj0Yosf-Ttj1pu0-6w--eWn9EH3Ll_wDG0qRs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jadhav, Suyog</creator><creator>Acuña, Sebastian</creator><creator>Opstad, Ida S</creator><creator>Singh Ahluwalia, Balpreet</creator><creator>Agarwal, Krishna</creator><creator>Prasad, Dilip K</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3693-6973</orcidid><orcidid>https://orcid.org/0000-0003-4462-4600</orcidid><orcidid>https://orcid.org/0000-0001-6968-578X</orcidid><orcidid>https://orcid.org/0000-0003-3299-4292</orcidid><orcidid>https://orcid.org/0000-0001-7841-6952</orcidid><orcidid>https://orcid.org/0000-0001-6894-9712</orcidid></search><sort><creationdate>20210101</creationdate><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><author>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electromagnetism, acoustics, optics: 434</topic><topic>Elektromagnetisme, akustikk, optikk: 434</topic><topic>Fysikk: 430</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Physics: 430</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Suyog</creatorcontrib><creatorcontrib>Acuña, Sebastian</creatorcontrib><creatorcontrib>Opstad, Ida S</creatorcontrib><creatorcontrib>Singh Ahluwalia, Balpreet</creatorcontrib><creatorcontrib>Agarwal, Krishna</creatorcontrib><creatorcontrib>Prasad, Dilip K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Suyog</au><au>Acuña, Sebastian</au><au>Opstad, Ida S</au><au>Singh Ahluwalia, Balpreet</au><au>Agarwal, Krishna</au><au>Prasad, Dilip K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>191</spage><epage>210</epage><pages>191-210</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33659075</pmid><doi>10.1364/BOE.410617</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3693-6973</orcidid><orcidid>https://orcid.org/0000-0003-4462-4600</orcidid><orcidid>https://orcid.org/0000-0001-6968-578X</orcidid><orcidid>https://orcid.org/0000-0003-3299-4292</orcidid><orcidid>https://orcid.org/0000-0001-7841-6952</orcidid><orcidid>https://orcid.org/0000-0001-6894-9712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2021-01, Vol.12 (1), p.191-210
issn 2156-7085
2156-7085
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_867363
source NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Electromagnetism, acoustics, optics: 434
Elektromagnetisme, akustikk, optikk: 434
Fysikk: 430
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Physics: 430
VDP
title Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artefact%20removal%20in%20ground%20truth%20deficient%20fluctuations-based%20nanoscopy%20images%20using%20deep%20learning&rft.jtitle=Biomedical%20optics%20express&rft.au=Jadhav,%20Suyog&rft.date=2021-01-01&rft.volume=12&rft.issue=1&rft.spage=191&rft.epage=210&rft.pages=191-210&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.410617&rft_dat=%3Cproquest_swepu%3E2497083044%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497083044&rft_id=info:pmid/33659075&rfr_iscdi=true