Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning
Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2021-01, Vol.12 (1), p.191-210 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 191 |
container_title | Biomedical optics express |
container_volume | 12 |
creator | Jadhav, Suyog Acuña, Sebastian Opstad, Ida S Singh Ahluwalia, Balpreet Agarwal, Krishna Prasad, Dilip K |
description | Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences. |
doi_str_mv | 10.1364/BOE.410617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_867363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497083044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</originalsourceid><addsrcrecordid>eNpVkU1vFSEUhonR2KZ24w9QlsZkKp8DbEzapn4kTbrRNWGYwy06F67A1PTfi7m3TcuGA-c5Ly95EXpLyRnlo_h0cXN1JigZqXqBjhmV46CIli-f1EfotNZfpC8hFOH6NTrifJSGKHmMpvPSIDjfcIFtvnMLjglvSl7TjFtZ2y2eIUQfITUcltW31bWYUx0mV2HGyaVcfd7d47h1G6h4rTFt-gzs8AKupH56g14Ft1Q4Pewn6OeXqx-X34brm6_fL8-vBy8EaQNjXkqQM9MKmDMhkGmcgU2GmW7aBDpRFqQ0io4avB81VdII6R2jbtLC8BM07HXrX9itk92V7qnc2-yiPVz97hVYPSo-8s5_3vO9s4XZ9y8Wtzwbe95J8dZu8p1V2hhJRRd4vxfwJdYWk025OEsJ4coyIjTtxIfDEyX_WaE2u43Vw7K4BHmtlgnTE-I9mI5-fBDLtRYIj0Yosf-Ttj1pu0-6w--eWn9EH3Ll_wDG0qRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497083044</pqid></control><display><type>article</type><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</creator><creatorcontrib>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</creatorcontrib><description>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.410617</identifier><identifier>PMID: 33659075</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Electromagnetism, acoustics, optics: 434 ; Elektromagnetisme, akustikk, optikk: 434 ; Fysikk: 430 ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Physics: 430 ; VDP</subject><ispartof>Biomedical optics express, 2021-01, Vol.12 (1), p.191-210</ispartof><rights>2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2020 Optical Society of America under the terms of the 2020 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</citedby><cites>FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</cites><orcidid>0000-0002-3693-6973 ; 0000-0003-4462-4600 ; 0000-0001-6968-578X ; 0000-0003-3299-4292 ; 0000-0001-7841-6952 ; 0000-0001-6894-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899514/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899514/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,26566,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33659075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:145570834$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jadhav, Suyog</creatorcontrib><creatorcontrib>Acuña, Sebastian</creatorcontrib><creatorcontrib>Opstad, Ida S</creatorcontrib><creatorcontrib>Singh Ahluwalia, Balpreet</creatorcontrib><creatorcontrib>Agarwal, Krishna</creatorcontrib><creatorcontrib>Prasad, Dilip K</creatorcontrib><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</description><subject>Electromagnetism, acoustics, optics: 434</subject><subject>Elektromagnetisme, akustikk, optikk: 434</subject><subject>Fysikk: 430</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Physics: 430</subject><subject>VDP</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNpVkU1vFSEUhonR2KZ24w9QlsZkKp8DbEzapn4kTbrRNWGYwy06F67A1PTfi7m3TcuGA-c5Ly95EXpLyRnlo_h0cXN1JigZqXqBjhmV46CIli-f1EfotNZfpC8hFOH6NTrifJSGKHmMpvPSIDjfcIFtvnMLjglvSl7TjFtZ2y2eIUQfITUcltW31bWYUx0mV2HGyaVcfd7d47h1G6h4rTFt-gzs8AKupH56g14Ft1Q4Pewn6OeXqx-X34brm6_fL8-vBy8EaQNjXkqQM9MKmDMhkGmcgU2GmW7aBDpRFqQ0io4avB81VdII6R2jbtLC8BM07HXrX9itk92V7qnc2-yiPVz97hVYPSo-8s5_3vO9s4XZ9y8Wtzwbe95J8dZu8p1V2hhJRRd4vxfwJdYWk025OEsJ4coyIjTtxIfDEyX_WaE2u43Vw7K4BHmtlgnTE-I9mI5-fBDLtRYIj0Yosf-Ttj1pu0-6w--eWn9EH3Ll_wDG0qRs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jadhav, Suyog</creator><creator>Acuña, Sebastian</creator><creator>Opstad, Ida S</creator><creator>Singh Ahluwalia, Balpreet</creator><creator>Agarwal, Krishna</creator><creator>Prasad, Dilip K</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3693-6973</orcidid><orcidid>https://orcid.org/0000-0003-4462-4600</orcidid><orcidid>https://orcid.org/0000-0001-6968-578X</orcidid><orcidid>https://orcid.org/0000-0003-3299-4292</orcidid><orcidid>https://orcid.org/0000-0001-7841-6952</orcidid><orcidid>https://orcid.org/0000-0001-6894-9712</orcidid></search><sort><creationdate>20210101</creationdate><title>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</title><author>Jadhav, Suyog ; Acuña, Sebastian ; Opstad, Ida S ; Singh Ahluwalia, Balpreet ; Agarwal, Krishna ; Prasad, Dilip K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-22c55e5d287e2a9ff0b6de2b9290389f1b12f5597168ecc68175945ca21ab8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electromagnetism, acoustics, optics: 434</topic><topic>Elektromagnetisme, akustikk, optikk: 434</topic><topic>Fysikk: 430</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Physics: 430</topic><topic>VDP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Suyog</creatorcontrib><creatorcontrib>Acuña, Sebastian</creatorcontrib><creatorcontrib>Opstad, Ida S</creatorcontrib><creatorcontrib>Singh Ahluwalia, Balpreet</creatorcontrib><creatorcontrib>Agarwal, Krishna</creatorcontrib><creatorcontrib>Prasad, Dilip K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Suyog</au><au>Acuña, Sebastian</au><au>Opstad, Ida S</au><au>Singh Ahluwalia, Balpreet</au><au>Agarwal, Krishna</au><au>Prasad, Dilip K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>191</spage><epage>210</epage><pages>191-210</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33659075</pmid><doi>10.1364/BOE.410617</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3693-6973</orcidid><orcidid>https://orcid.org/0000-0003-4462-4600</orcidid><orcidid>https://orcid.org/0000-0001-6968-578X</orcidid><orcidid>https://orcid.org/0000-0003-3299-4292</orcidid><orcidid>https://orcid.org/0000-0001-7841-6952</orcidid><orcidid>https://orcid.org/0000-0001-6894-9712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2021-01, Vol.12 (1), p.191-210 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_867363 |
source | NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Electromagnetism, acoustics, optics: 434 Elektromagnetisme, akustikk, optikk: 434 Fysikk: 430 Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Physics: 430 VDP |
title | Artefact removal in ground truth deficient fluctuations-based nanoscopy images using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artefact%20removal%20in%20ground%20truth%20deficient%20fluctuations-based%20nanoscopy%20images%20using%20deep%20learning&rft.jtitle=Biomedical%20optics%20express&rft.au=Jadhav,%20Suyog&rft.date=2021-01-01&rft.volume=12&rft.issue=1&rft.spage=191&rft.epage=210&rft.pages=191-210&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.410617&rft_dat=%3Cproquest_swepu%3E2497083044%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497083044&rft_id=info:pmid/33659075&rfr_iscdi=true |