Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms
In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of th...
Gespeichert in:
Veröffentlicht in: | ACS chemical neuroscience 2024-05, Vol.15 (10), p.2018-2027 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2027 |
---|---|
container_issue | 10 |
container_start_page | 2018 |
container_title | ACS chemical neuroscience |
container_volume | 15 |
creator | Li, Junhao Zou, Rongfeng Varrone, Andrea Nag, Sangram Halldin, Christer Ågren, Hans |
description | In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases. |
doi_str_mv | 10.1021/acschemneuro.4c00029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_864299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050940525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</originalsourceid><addsrcrecordid>eNp9ks1y0zAUhT0MDP2BN2AYLVnERbJkW1oxJbQlTGZYQLvVyPJ1omJLqSQTsusr8Io8CQoJnXQBKx1J3zlXmnuz7BXBZwQX5K3SQS9hsDB6d8Y0xrgQT7JjIhjPayLo0wN9lJ2EcItxJTCvnmdHlNeYUI6PM3fxY9U7b-wCxSWgmY3glY7G2YAaiGsAi-LaoblZKNuGCbqevv91__MTSrutzi8nf-SXjVWraDS6gWB0D-iq32i38i6CsahAs-A654fwInvWqT7Ay_16ml1fXnydfsznn69m0_N5rljNYl63nJGONqRpa0KAAOaialldgKJ1V_NGdxXutGJC04p3nGneFbiloIgmipX0NMt3uWENq7GRK28G5TfSKSP3R9-SAskrVgiR-Mk_-Q_m5lw6v5DjKEuKWVkn_N0OT-wArQYbveofuR7fWLOUC_ddEoKFEISkhDf7BO_uRghRDiZo6HtlwY1BUlxiwXBZbP_Cdqj2LgQP3UMdguV2FuThLMj9LCTb68M3Ppj-Nj8BeAcku7x1o7epI__P_A3i4scq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050940525</pqid></control><display><type>article</type><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><source>ACS Publications</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</creator><creatorcontrib>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</creatorcontrib><description>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.4c00029</identifier><identifier>PMID: 38701380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Humans ; Hydrogen Bonding ; in silico modeling ; Ligands ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - metabolism ; Molecular Docking Simulation - methods ; Molecular Dynamics Simulation ; molecular dynamics simulations ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - metabolism ; positron emission tomography ; Protein Binding - physiology ; Protein Isoforms - chemistry ; Protein Isoforms - metabolism ; synaptic vesicle glycoprotein 2 ; Synaptic Vesicles - metabolism</subject><ispartof>ACS chemical neuroscience, 2024-05, Vol.15 (10), p.2018-2027</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</cites><orcidid>0000-0002-1497-7993 ; 0000-0003-3590-4256 ; 0000-0002-1763-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschemneuro.4c00029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschemneuro.4c00029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38701380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530457$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:158281194$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junhao</creatorcontrib><creatorcontrib>Zou, Rongfeng</creatorcontrib><creatorcontrib>Varrone, Andrea</creatorcontrib><creatorcontrib>Nag, Sangram</creatorcontrib><creatorcontrib>Halldin, Christer</creatorcontrib><creatorcontrib>Ågren, Hans</creatorcontrib><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem. Neurosci</addtitle><description>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</description><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>in silico modeling</subject><subject>Ligands</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular dynamics simulations</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>positron emission tomography</subject><subject>Protein Binding - physiology</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - metabolism</subject><subject>synaptic vesicle glycoprotein 2</subject><subject>Synaptic Vesicles - metabolism</subject><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9ks1y0zAUhT0MDP2BN2AYLVnERbJkW1oxJbQlTGZYQLvVyPJ1omJLqSQTsusr8Io8CQoJnXQBKx1J3zlXmnuz7BXBZwQX5K3SQS9hsDB6d8Y0xrgQT7JjIhjPayLo0wN9lJ2EcItxJTCvnmdHlNeYUI6PM3fxY9U7b-wCxSWgmY3glY7G2YAaiGsAi-LaoblZKNuGCbqevv91__MTSrutzi8nf-SXjVWraDS6gWB0D-iq32i38i6CsahAs-A654fwInvWqT7Ay_16ml1fXnydfsznn69m0_N5rljNYl63nJGONqRpa0KAAOaialldgKJ1V_NGdxXutGJC04p3nGneFbiloIgmipX0NMt3uWENq7GRK28G5TfSKSP3R9-SAskrVgiR-Mk_-Q_m5lw6v5DjKEuKWVkn_N0OT-wArQYbveofuR7fWLOUC_ddEoKFEISkhDf7BO_uRghRDiZo6HtlwY1BUlxiwXBZbP_Cdqj2LgQP3UMdguV2FuThLMj9LCTb68M3Ppj-Nj8BeAcku7x1o7epI__P_A3i4scq</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Li, Junhao</creator><creator>Zou, Rongfeng</creator><creator>Varrone, Andrea</creator><creator>Nag, Sangram</creator><creator>Halldin, Christer</creator><creator>Ågren, Hans</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1497-7993</orcidid><orcidid>https://orcid.org/0000-0003-3590-4256</orcidid><orcidid>https://orcid.org/0000-0002-1763-9383</orcidid></search><sort><creationdate>20240515</creationdate><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><author>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>in silico modeling</topic><topic>Ligands</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular dynamics simulations</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>positron emission tomography</topic><topic>Protein Binding - physiology</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - metabolism</topic><topic>synaptic vesicle glycoprotein 2</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junhao</creatorcontrib><creatorcontrib>Zou, Rongfeng</creatorcontrib><creatorcontrib>Varrone, Andrea</creatorcontrib><creatorcontrib>Nag, Sangram</creatorcontrib><creatorcontrib>Halldin, Christer</creatorcontrib><creatorcontrib>Ågren, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junhao</au><au>Zou, Rongfeng</au><au>Varrone, Andrea</au><au>Nag, Sangram</au><au>Halldin, Christer</au><au>Ågren, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem. Neurosci</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>2018</spage><epage>2027</epage><pages>2018-2027</pages><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38701380</pmid><doi>10.1021/acschemneuro.4c00029</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1497-7993</orcidid><orcidid>https://orcid.org/0000-0003-3590-4256</orcidid><orcidid>https://orcid.org/0000-0002-1763-9383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7193 |
ispartof | ACS chemical neuroscience, 2024-05, Vol.15 (10), p.2018-2027 |
issn | 1948-7193 1948-7193 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_864299 |
source | ACS Publications; MEDLINE; SWEPUB Freely available online |
subjects | Humans Hydrogen Bonding in silico modeling Ligands Membrane Glycoproteins - chemistry Membrane Glycoproteins - metabolism Molecular Docking Simulation - methods Molecular Dynamics Simulation molecular dynamics simulations Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - metabolism positron emission tomography Protein Binding - physiology Protein Isoforms - chemistry Protein Isoforms - metabolism synaptic vesicle glycoprotein 2 Synaptic Vesicles - metabolism |
title | Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Interactions%20between%20two%20Ligands,%20UCB%E2%80%91J%20and%20UCB-F,%20and%20Synaptic%20Vesicle%20Glycoprotein%202%20Isoforms&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=Li,%20Junhao&rft.date=2024-05-15&rft.volume=15&rft.issue=10&rft.spage=2018&rft.epage=2027&rft.pages=2018-2027&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.4c00029&rft_dat=%3Cproquest_swepu%3E3050940525%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050940525&rft_id=info:pmid/38701380&rfr_iscdi=true |