Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms

In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical neuroscience 2024-05, Vol.15 (10), p.2018-2027
Hauptverfasser: Li, Junhao, Zou, Rongfeng, Varrone, Andrea, Nag, Sangram, Halldin, Christer, Ågren, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 10
container_start_page 2018
container_title ACS chemical neuroscience
container_volume 15
creator Li, Junhao
Zou, Rongfeng
Varrone, Andrea
Nag, Sangram
Halldin, Christer
Ågren, Hans
description In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.
doi_str_mv 10.1021/acschemneuro.4c00029
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_864299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050940525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</originalsourceid><addsrcrecordid>eNp9ks1y0zAUhT0MDP2BN2AYLVnERbJkW1oxJbQlTGZYQLvVyPJ1omJLqSQTsusr8Io8CQoJnXQBKx1J3zlXmnuz7BXBZwQX5K3SQS9hsDB6d8Y0xrgQT7JjIhjPayLo0wN9lJ2EcItxJTCvnmdHlNeYUI6PM3fxY9U7b-wCxSWgmY3glY7G2YAaiGsAi-LaoblZKNuGCbqevv91__MTSrutzi8nf-SXjVWraDS6gWB0D-iq32i38i6CsahAs-A654fwInvWqT7Ay_16ml1fXnydfsznn69m0_N5rljNYl63nJGONqRpa0KAAOaialldgKJ1V_NGdxXutGJC04p3nGneFbiloIgmipX0NMt3uWENq7GRK28G5TfSKSP3R9-SAskrVgiR-Mk_-Q_m5lw6v5DjKEuKWVkn_N0OT-wArQYbveofuR7fWLOUC_ddEoKFEISkhDf7BO_uRghRDiZo6HtlwY1BUlxiwXBZbP_Cdqj2LgQP3UMdguV2FuThLMj9LCTb68M3Ppj-Nj8BeAcku7x1o7epI__P_A3i4scq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050940525</pqid></control><display><type>article</type><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><source>ACS Publications</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</creator><creatorcontrib>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</creatorcontrib><description>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.4c00029</identifier><identifier>PMID: 38701380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Humans ; Hydrogen Bonding ; in silico modeling ; Ligands ; Membrane Glycoproteins - chemistry ; Membrane Glycoproteins - metabolism ; Molecular Docking Simulation - methods ; Molecular Dynamics Simulation ; molecular dynamics simulations ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - metabolism ; positron emission tomography ; Protein Binding - physiology ; Protein Isoforms - chemistry ; Protein Isoforms - metabolism ; synaptic vesicle glycoprotein 2 ; Synaptic Vesicles - metabolism</subject><ispartof>ACS chemical neuroscience, 2024-05, Vol.15 (10), p.2018-2027</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</cites><orcidid>0000-0002-1497-7993 ; 0000-0003-3590-4256 ; 0000-0002-1763-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschemneuro.4c00029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschemneuro.4c00029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38701380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530457$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:158281194$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junhao</creatorcontrib><creatorcontrib>Zou, Rongfeng</creatorcontrib><creatorcontrib>Varrone, Andrea</creatorcontrib><creatorcontrib>Nag, Sangram</creatorcontrib><creatorcontrib>Halldin, Christer</creatorcontrib><creatorcontrib>Ågren, Hans</creatorcontrib><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem. Neurosci</addtitle><description>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</description><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>in silico modeling</subject><subject>Ligands</subject><subject>Membrane Glycoproteins - chemistry</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Molecular Docking Simulation - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>molecular dynamics simulations</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>positron emission tomography</subject><subject>Protein Binding - physiology</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - metabolism</subject><subject>synaptic vesicle glycoprotein 2</subject><subject>Synaptic Vesicles - metabolism</subject><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9ks1y0zAUhT0MDP2BN2AYLVnERbJkW1oxJbQlTGZYQLvVyPJ1omJLqSQTsusr8Io8CQoJnXQBKx1J3zlXmnuz7BXBZwQX5K3SQS9hsDB6d8Y0xrgQT7JjIhjPayLo0wN9lJ2EcItxJTCvnmdHlNeYUI6PM3fxY9U7b-wCxSWgmY3glY7G2YAaiGsAi-LaoblZKNuGCbqevv91__MTSrutzi8nf-SXjVWraDS6gWB0D-iq32i38i6CsahAs-A654fwInvWqT7Ay_16ml1fXnydfsznn69m0_N5rljNYl63nJGONqRpa0KAAOaialldgKJ1V_NGdxXutGJC04p3nGneFbiloIgmipX0NMt3uWENq7GRK28G5TfSKSP3R9-SAskrVgiR-Mk_-Q_m5lw6v5DjKEuKWVkn_N0OT-wArQYbveofuR7fWLOUC_ddEoKFEISkhDf7BO_uRghRDiZo6HtlwY1BUlxiwXBZbP_Cdqj2LgQP3UMdguV2FuThLMj9LCTb68M3Ppj-Nj8BeAcku7x1o7epI__P_A3i4scq</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Li, Junhao</creator><creator>Zou, Rongfeng</creator><creator>Varrone, Andrea</creator><creator>Nag, Sangram</creator><creator>Halldin, Christer</creator><creator>Ågren, Hans</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1497-7993</orcidid><orcidid>https://orcid.org/0000-0003-3590-4256</orcidid><orcidid>https://orcid.org/0000-0002-1763-9383</orcidid></search><sort><creationdate>20240515</creationdate><title>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</title><author>Li, Junhao ; Zou, Rongfeng ; Varrone, Andrea ; Nag, Sangram ; Halldin, Christer ; Ågren, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-7d841f3b1bd711e1e0896d472ea37f78bcf60fca49c368f84c8f20d3ea1c1a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>in silico modeling</topic><topic>Ligands</topic><topic>Membrane Glycoproteins - chemistry</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Molecular Docking Simulation - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>molecular dynamics simulations</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>positron emission tomography</topic><topic>Protein Binding - physiology</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - metabolism</topic><topic>synaptic vesicle glycoprotein 2</topic><topic>Synaptic Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junhao</creatorcontrib><creatorcontrib>Zou, Rongfeng</creatorcontrib><creatorcontrib>Varrone, Andrea</creatorcontrib><creatorcontrib>Nag, Sangram</creatorcontrib><creatorcontrib>Halldin, Christer</creatorcontrib><creatorcontrib>Ågren, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junhao</au><au>Zou, Rongfeng</au><au>Varrone, Andrea</au><au>Nag, Sangram</au><au>Halldin, Christer</au><au>Ågren, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem. Neurosci</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>2018</spage><epage>2027</epage><pages>2018-2027</pages><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π–π, and cation−π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation−π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π–π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38701380</pmid><doi>10.1021/acschemneuro.4c00029</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1497-7993</orcidid><orcidid>https://orcid.org/0000-0003-3590-4256</orcidid><orcidid>https://orcid.org/0000-0002-1763-9383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7193
ispartof ACS chemical neuroscience, 2024-05, Vol.15 (10), p.2018-2027
issn 1948-7193
1948-7193
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_864299
source ACS Publications; MEDLINE; SWEPUB Freely available online
subjects Humans
Hydrogen Bonding
in silico modeling
Ligands
Membrane Glycoproteins - chemistry
Membrane Glycoproteins - metabolism
Molecular Docking Simulation - methods
Molecular Dynamics Simulation
molecular dynamics simulations
Nerve Tissue Proteins - chemistry
Nerve Tissue Proteins - metabolism
positron emission tomography
Protein Binding - physiology
Protein Isoforms - chemistry
Protein Isoforms - metabolism
synaptic vesicle glycoprotein 2
Synaptic Vesicles - metabolism
title Exploring the Interactions between two Ligands, UCB‑J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Interactions%20between%20two%20Ligands,%20UCB%E2%80%91J%20and%20UCB-F,%20and%20Synaptic%20Vesicle%20Glycoprotein%202%20Isoforms&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=Li,%20Junhao&rft.date=2024-05-15&rft.volume=15&rft.issue=10&rft.spage=2018&rft.epage=2027&rft.pages=2018-2027&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.4c00029&rft_dat=%3Cproquest_swepu%3E3050940525%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050940525&rft_id=info:pmid/38701380&rfr_iscdi=true