Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach

High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PNAS NEXUS 2024-03, Vol.3 (3), p.pgae088
Hauptverfasser: Mandal, Siddhartha, Rajiva, Ajit, Kloog, Itai, Menon, Jyothi S, Lane, Kevin J, Amini, Heresh, Walia, Gagandeep K, Dixit, Shweta, Nori-Sarma, Amruta, Dutta, Anubrati, Sharma, Praggya, Jaganathan, Suganthi, Madhipatla, Kishore K, Wellenius, Gregory A, de Bont, Jeroen, Venkataraman, Chandra, Prabhakaran, Dorairaj, Prabhakaran, Poornima, Ljungman, Petter, Schwartz, Joel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page pgae088
container_title PNAS NEXUS
container_volume 3
creator Mandal, Siddhartha
Rajiva, Ajit
Kloog, Itai
Menon, Jyothi S
Lane, Kevin J
Amini, Heresh
Walia, Gagandeep K
Dixit, Shweta
Nori-Sarma, Amruta
Dutta, Anubrati
Sharma, Praggya
Jaganathan, Suganthi
Madhipatla, Kishore K
Wellenius, Gregory A
de Bont, Jeroen
Venkataraman, Chandra
Prabhakaran, Dorairaj
Prabhakaran, Poornima
Ljungman, Petter
Schwartz, Joel
description High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM ) pollution in India. We developed a model for daily average ambient PM between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m (interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)- of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m . We obtained high spatial accuracy with spatial greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM at a very fine spatiotemporal resolution, which allows us to study the health effects of PM across India and to identify areas with exceedingly high levels.
doi_str_mv 10.1093/pnasnexus/pgae088
format Article
fullrecord <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_850116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38456174</sourcerecordid><originalsourceid>FETCH-LOGICAL-p616-d479fa95e329ce9288b7219b4c84f1e8205af850b1f64a6922ca2fb4cfe778b63</originalsourceid><addsrcrecordid>eNo9kM1uwjAQhK1KVUGUB-il2hcI2I4dO8cK9Qepfwfu0SZZUxfiRDiI8vZNC-1pdmc-jbTL2I3gM8HzdN4FjIG-9nHerZG4tRdsLI2WSaaVHLFpjJ-cc2mMEEpfsVFqlc6EUWPWvGLv23DwNQHF3je_K7QOavTbI2BTego9vL-AnGlwu7YBybmFvh1UcsAeBGwGE3yAZag9wj76sAYMQCFSU24JsOt2LVYf1-zS4TbS9KwTtnq4Xy2ekue3x-Xi7jnpMpEltTK5w1xTKvOKcmltaaTIS1VZ5QRZyTU6q3kpXKYwy6WsULohdmSMLbN0wpJTbTxQty-LbjfctTsWLfribG2GiYqhRIgf_vbED0lD9T__96b0G0HoaWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</creator><creatorcontrib>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</creatorcontrib><description>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM ) pollution in India. We developed a model for daily average ambient PM between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m (interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)- of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m . We obtained high spatial accuracy with spatial greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM at a very fine spatiotemporal resolution, which allows us to study the health effects of PM across India and to identify areas with exceedingly high levels.</description><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgae088</identifier><identifier>PMID: 38456174</identifier><language>eng</language><publisher>England</publisher><ispartof>PNAS NEXUS, 2024-03, Vol.3 (3), p.pgae088</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2280-3360 ; 0000-0003-3134-7026 ; 0000-0002-2329-9733 ; 0000-0003-0427-7376 ; 0000-0001-9924-5961 ; 0000-0001-6168-378X ; 0000-0001-6422-1329 ; 0000-0003-2316-7180 ; 0009-0004-7117-649X ; 0000-0002-1038-6811 ; 0000-0001-8081-2284 ; 0000-0002-7815-2632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38456174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:238456174$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Siddhartha</creatorcontrib><creatorcontrib>Rajiva, Ajit</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Menon, Jyothi S</creatorcontrib><creatorcontrib>Lane, Kevin J</creatorcontrib><creatorcontrib>Amini, Heresh</creatorcontrib><creatorcontrib>Walia, Gagandeep K</creatorcontrib><creatorcontrib>Dixit, Shweta</creatorcontrib><creatorcontrib>Nori-Sarma, Amruta</creatorcontrib><creatorcontrib>Dutta, Anubrati</creatorcontrib><creatorcontrib>Sharma, Praggya</creatorcontrib><creatorcontrib>Jaganathan, Suganthi</creatorcontrib><creatorcontrib>Madhipatla, Kishore K</creatorcontrib><creatorcontrib>Wellenius, Gregory A</creatorcontrib><creatorcontrib>de Bont, Jeroen</creatorcontrib><creatorcontrib>Venkataraman, Chandra</creatorcontrib><creatorcontrib>Prabhakaran, Dorairaj</creatorcontrib><creatorcontrib>Prabhakaran, Poornima</creatorcontrib><creatorcontrib>Ljungman, Petter</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><title>PNAS NEXUS</title><addtitle>PNAS Nexus</addtitle><description>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM ) pollution in India. We developed a model for daily average ambient PM between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m (interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)- of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m . We obtained high spatial accuracy with spatial greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM at a very fine spatiotemporal resolution, which allows us to study the health effects of PM across India and to identify areas with exceedingly high levels.</description><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNo9kM1uwjAQhK1KVUGUB-il2hcI2I4dO8cK9Qepfwfu0SZZUxfiRDiI8vZNC-1pdmc-jbTL2I3gM8HzdN4FjIG-9nHerZG4tRdsLI2WSaaVHLFpjJ-cc2mMEEpfsVFqlc6EUWPWvGLv23DwNQHF3je_K7QOavTbI2BTego9vL-AnGlwu7YBybmFvh1UcsAeBGwGE3yAZag9wj76sAYMQCFSU24JsOt2LVYf1-zS4TbS9KwTtnq4Xy2ekue3x-Xi7jnpMpEltTK5w1xTKvOKcmltaaTIS1VZ5QRZyTU6q3kpXKYwy6WsULohdmSMLbN0wpJTbTxQty-LbjfctTsWLfribG2GiYqhRIgf_vbED0lD9T__96b0G0HoaWU</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Mandal, Siddhartha</creator><creator>Rajiva, Ajit</creator><creator>Kloog, Itai</creator><creator>Menon, Jyothi S</creator><creator>Lane, Kevin J</creator><creator>Amini, Heresh</creator><creator>Walia, Gagandeep K</creator><creator>Dixit, Shweta</creator><creator>Nori-Sarma, Amruta</creator><creator>Dutta, Anubrati</creator><creator>Sharma, Praggya</creator><creator>Jaganathan, Suganthi</creator><creator>Madhipatla, Kishore K</creator><creator>Wellenius, Gregory A</creator><creator>de Bont, Jeroen</creator><creator>Venkataraman, Chandra</creator><creator>Prabhakaran, Dorairaj</creator><creator>Prabhakaran, Poornima</creator><creator>Ljungman, Petter</creator><creator>Schwartz, Joel</creator><scope>NPM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2280-3360</orcidid><orcidid>https://orcid.org/0000-0003-3134-7026</orcidid><orcidid>https://orcid.org/0000-0002-2329-9733</orcidid><orcidid>https://orcid.org/0000-0003-0427-7376</orcidid><orcidid>https://orcid.org/0000-0001-9924-5961</orcidid><orcidid>https://orcid.org/0000-0001-6168-378X</orcidid><orcidid>https://orcid.org/0000-0001-6422-1329</orcidid><orcidid>https://orcid.org/0000-0003-2316-7180</orcidid><orcidid>https://orcid.org/0009-0004-7117-649X</orcidid><orcidid>https://orcid.org/0000-0002-1038-6811</orcidid><orcidid>https://orcid.org/0000-0001-8081-2284</orcidid><orcidid>https://orcid.org/0000-0002-7815-2632</orcidid></search><sort><creationdate>202403</creationdate><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><author>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p616-d479fa95e329ce9288b7219b4c84f1e8205af850b1f64a6922ca2fb4cfe778b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Siddhartha</creatorcontrib><creatorcontrib>Rajiva, Ajit</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Menon, Jyothi S</creatorcontrib><creatorcontrib>Lane, Kevin J</creatorcontrib><creatorcontrib>Amini, Heresh</creatorcontrib><creatorcontrib>Walia, Gagandeep K</creatorcontrib><creatorcontrib>Dixit, Shweta</creatorcontrib><creatorcontrib>Nori-Sarma, Amruta</creatorcontrib><creatorcontrib>Dutta, Anubrati</creatorcontrib><creatorcontrib>Sharma, Praggya</creatorcontrib><creatorcontrib>Jaganathan, Suganthi</creatorcontrib><creatorcontrib>Madhipatla, Kishore K</creatorcontrib><creatorcontrib>Wellenius, Gregory A</creatorcontrib><creatorcontrib>de Bont, Jeroen</creatorcontrib><creatorcontrib>Venkataraman, Chandra</creatorcontrib><creatorcontrib>Prabhakaran, Dorairaj</creatorcontrib><creatorcontrib>Prabhakaran, Poornima</creatorcontrib><creatorcontrib>Ljungman, Petter</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><collection>PubMed</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>PNAS NEXUS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Siddhartha</au><au>Rajiva, Ajit</au><au>Kloog, Itai</au><au>Menon, Jyothi S</au><au>Lane, Kevin J</au><au>Amini, Heresh</au><au>Walia, Gagandeep K</au><au>Dixit, Shweta</au><au>Nori-Sarma, Amruta</au><au>Dutta, Anubrati</au><au>Sharma, Praggya</au><au>Jaganathan, Suganthi</au><au>Madhipatla, Kishore K</au><au>Wellenius, Gregory A</au><au>de Bont, Jeroen</au><au>Venkataraman, Chandra</au><au>Prabhakaran, Dorairaj</au><au>Prabhakaran, Poornima</au><au>Ljungman, Petter</au><au>Schwartz, Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</atitle><jtitle>PNAS NEXUS</jtitle><addtitle>PNAS Nexus</addtitle><date>2024-03</date><risdate>2024</risdate><volume>3</volume><issue>3</issue><spage>pgae088</spage><pages>pgae088-</pages><eissn>2752-6542</eissn><abstract>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM ) pollution in India. We developed a model for daily average ambient PM between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m (interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)- of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m . We obtained high spatial accuracy with spatial greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM at a very fine spatiotemporal resolution, which allows us to study the health effects of PM across India and to identify areas with exceedingly high levels.</abstract><cop>England</cop><pmid>38456174</pmid><doi>10.1093/pnasnexus/pgae088</doi><orcidid>https://orcid.org/0000-0002-2280-3360</orcidid><orcidid>https://orcid.org/0000-0003-3134-7026</orcidid><orcidid>https://orcid.org/0000-0002-2329-9733</orcidid><orcidid>https://orcid.org/0000-0003-0427-7376</orcidid><orcidid>https://orcid.org/0000-0001-9924-5961</orcidid><orcidid>https://orcid.org/0000-0001-6168-378X</orcidid><orcidid>https://orcid.org/0000-0001-6422-1329</orcidid><orcidid>https://orcid.org/0000-0003-2316-7180</orcidid><orcidid>https://orcid.org/0009-0004-7117-649X</orcidid><orcidid>https://orcid.org/0000-0002-1038-6811</orcidid><orcidid>https://orcid.org/0000-0001-8081-2284</orcidid><orcidid>https://orcid.org/0000-0002-7815-2632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2752-6542
ispartof PNAS NEXUS, 2024-03, Vol.3 (3), p.pgae088
issn 2752-6542
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_850116
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SWEPUB Freely available online
title Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nationwide%20estimation%20of%20daily%20ambient%20PM%202.5%20from%202008%20to%202020%20at%201%20km%202%20in%20India%20using%20an%20ensemble%20approach&rft.jtitle=PNAS%20NEXUS&rft.au=Mandal,%20Siddhartha&rft.date=2024-03&rft.volume=3&rft.issue=3&rft.spage=pgae088&rft.pages=pgae088-&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgae088&rft_dat=%3Cpubmed_swepu%3E38456174%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38456174&rfr_iscdi=true