Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach
High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to...
Gespeichert in:
Veröffentlicht in: | PNAS NEXUS 2024-03, Vol.3 (3), p.pgae088 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | pgae088 |
container_title | PNAS NEXUS |
container_volume | 3 |
creator | Mandal, Siddhartha Rajiva, Ajit Kloog, Itai Menon, Jyothi S Lane, Kevin J Amini, Heresh Walia, Gagandeep K Dixit, Shweta Nori-Sarma, Amruta Dutta, Anubrati Sharma, Praggya Jaganathan, Suganthi Madhipatla, Kishore K Wellenius, Gregory A de Bont, Jeroen Venkataraman, Chandra Prabhakaran, Dorairaj Prabhakaran, Poornima Ljungman, Petter Schwartz, Joel |
description | High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM
) pollution in India. We developed a model for daily average ambient PM
between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an
of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m
(interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m
(interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-
of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m
. We obtained high spatial accuracy with spatial
greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m
with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM
at a very fine spatiotemporal resolution, which allows us to study the health effects of PM
across India and to identify areas with exceedingly high levels. |
doi_str_mv | 10.1093/pnasnexus/pgae088 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_850116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38456174</sourcerecordid><originalsourceid>FETCH-LOGICAL-p616-d479fa95e329ce9288b7219b4c84f1e8205af850b1f64a6922ca2fb4cfe778b63</originalsourceid><addsrcrecordid>eNo9kM1uwjAQhK1KVUGUB-il2hcI2I4dO8cK9Qepfwfu0SZZUxfiRDiI8vZNC-1pdmc-jbTL2I3gM8HzdN4FjIG-9nHerZG4tRdsLI2WSaaVHLFpjJ-cc2mMEEpfsVFqlc6EUWPWvGLv23DwNQHF3je_K7QOavTbI2BTego9vL-AnGlwu7YBybmFvh1UcsAeBGwGE3yAZag9wj76sAYMQCFSU24JsOt2LVYf1-zS4TbS9KwTtnq4Xy2ekue3x-Xi7jnpMpEltTK5w1xTKvOKcmltaaTIS1VZ5QRZyTU6q3kpXKYwy6WsULohdmSMLbN0wpJTbTxQty-LbjfctTsWLfribG2GiYqhRIgf_vbED0lD9T__96b0G0HoaWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</creator><creatorcontrib>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</creatorcontrib><description>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM
) pollution in India. We developed a model for daily average ambient PM
between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an
of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m
(interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m
(interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-
of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m
. We obtained high spatial accuracy with spatial
greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m
with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM
at a very fine spatiotemporal resolution, which allows us to study the health effects of PM
across India and to identify areas with exceedingly high levels.</description><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgae088</identifier><identifier>PMID: 38456174</identifier><language>eng</language><publisher>England</publisher><ispartof>PNAS NEXUS, 2024-03, Vol.3 (3), p.pgae088</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2280-3360 ; 0000-0003-3134-7026 ; 0000-0002-2329-9733 ; 0000-0003-0427-7376 ; 0000-0001-9924-5961 ; 0000-0001-6168-378X ; 0000-0001-6422-1329 ; 0000-0003-2316-7180 ; 0009-0004-7117-649X ; 0000-0002-1038-6811 ; 0000-0001-8081-2284 ; 0000-0002-7815-2632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38456174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:238456174$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Siddhartha</creatorcontrib><creatorcontrib>Rajiva, Ajit</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Menon, Jyothi S</creatorcontrib><creatorcontrib>Lane, Kevin J</creatorcontrib><creatorcontrib>Amini, Heresh</creatorcontrib><creatorcontrib>Walia, Gagandeep K</creatorcontrib><creatorcontrib>Dixit, Shweta</creatorcontrib><creatorcontrib>Nori-Sarma, Amruta</creatorcontrib><creatorcontrib>Dutta, Anubrati</creatorcontrib><creatorcontrib>Sharma, Praggya</creatorcontrib><creatorcontrib>Jaganathan, Suganthi</creatorcontrib><creatorcontrib>Madhipatla, Kishore K</creatorcontrib><creatorcontrib>Wellenius, Gregory A</creatorcontrib><creatorcontrib>de Bont, Jeroen</creatorcontrib><creatorcontrib>Venkataraman, Chandra</creatorcontrib><creatorcontrib>Prabhakaran, Dorairaj</creatorcontrib><creatorcontrib>Prabhakaran, Poornima</creatorcontrib><creatorcontrib>Ljungman, Petter</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><title>PNAS NEXUS</title><addtitle>PNAS Nexus</addtitle><description>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM
) pollution in India. We developed a model for daily average ambient PM
between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an
of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m
(interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m
(interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-
of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m
. We obtained high spatial accuracy with spatial
greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m
with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM
at a very fine spatiotemporal resolution, which allows us to study the health effects of PM
across India and to identify areas with exceedingly high levels.</description><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNo9kM1uwjAQhK1KVUGUB-il2hcI2I4dO8cK9Qepfwfu0SZZUxfiRDiI8vZNC-1pdmc-jbTL2I3gM8HzdN4FjIG-9nHerZG4tRdsLI2WSaaVHLFpjJ-cc2mMEEpfsVFqlc6EUWPWvGLv23DwNQHF3je_K7QOavTbI2BTego9vL-AnGlwu7YBybmFvh1UcsAeBGwGE3yAZag9wj76sAYMQCFSU24JsOt2LVYf1-zS4TbS9KwTtnq4Xy2ekue3x-Xi7jnpMpEltTK5w1xTKvOKcmltaaTIS1VZ5QRZyTU6q3kpXKYwy6WsULohdmSMLbN0wpJTbTxQty-LbjfctTsWLfribG2GiYqhRIgf_vbED0lD9T__96b0G0HoaWU</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Mandal, Siddhartha</creator><creator>Rajiva, Ajit</creator><creator>Kloog, Itai</creator><creator>Menon, Jyothi S</creator><creator>Lane, Kevin J</creator><creator>Amini, Heresh</creator><creator>Walia, Gagandeep K</creator><creator>Dixit, Shweta</creator><creator>Nori-Sarma, Amruta</creator><creator>Dutta, Anubrati</creator><creator>Sharma, Praggya</creator><creator>Jaganathan, Suganthi</creator><creator>Madhipatla, Kishore K</creator><creator>Wellenius, Gregory A</creator><creator>de Bont, Jeroen</creator><creator>Venkataraman, Chandra</creator><creator>Prabhakaran, Dorairaj</creator><creator>Prabhakaran, Poornima</creator><creator>Ljungman, Petter</creator><creator>Schwartz, Joel</creator><scope>NPM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2280-3360</orcidid><orcidid>https://orcid.org/0000-0003-3134-7026</orcidid><orcidid>https://orcid.org/0000-0002-2329-9733</orcidid><orcidid>https://orcid.org/0000-0003-0427-7376</orcidid><orcidid>https://orcid.org/0000-0001-9924-5961</orcidid><orcidid>https://orcid.org/0000-0001-6168-378X</orcidid><orcidid>https://orcid.org/0000-0001-6422-1329</orcidid><orcidid>https://orcid.org/0000-0003-2316-7180</orcidid><orcidid>https://orcid.org/0009-0004-7117-649X</orcidid><orcidid>https://orcid.org/0000-0002-1038-6811</orcidid><orcidid>https://orcid.org/0000-0001-8081-2284</orcidid><orcidid>https://orcid.org/0000-0002-7815-2632</orcidid></search><sort><creationdate>202403</creationdate><title>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</title><author>Mandal, Siddhartha ; Rajiva, Ajit ; Kloog, Itai ; Menon, Jyothi S ; Lane, Kevin J ; Amini, Heresh ; Walia, Gagandeep K ; Dixit, Shweta ; Nori-Sarma, Amruta ; Dutta, Anubrati ; Sharma, Praggya ; Jaganathan, Suganthi ; Madhipatla, Kishore K ; Wellenius, Gregory A ; de Bont, Jeroen ; Venkataraman, Chandra ; Prabhakaran, Dorairaj ; Prabhakaran, Poornima ; Ljungman, Petter ; Schwartz, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p616-d479fa95e329ce9288b7219b4c84f1e8205af850b1f64a6922ca2fb4cfe778b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Siddhartha</creatorcontrib><creatorcontrib>Rajiva, Ajit</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Menon, Jyothi S</creatorcontrib><creatorcontrib>Lane, Kevin J</creatorcontrib><creatorcontrib>Amini, Heresh</creatorcontrib><creatorcontrib>Walia, Gagandeep K</creatorcontrib><creatorcontrib>Dixit, Shweta</creatorcontrib><creatorcontrib>Nori-Sarma, Amruta</creatorcontrib><creatorcontrib>Dutta, Anubrati</creatorcontrib><creatorcontrib>Sharma, Praggya</creatorcontrib><creatorcontrib>Jaganathan, Suganthi</creatorcontrib><creatorcontrib>Madhipatla, Kishore K</creatorcontrib><creatorcontrib>Wellenius, Gregory A</creatorcontrib><creatorcontrib>de Bont, Jeroen</creatorcontrib><creatorcontrib>Venkataraman, Chandra</creatorcontrib><creatorcontrib>Prabhakaran, Dorairaj</creatorcontrib><creatorcontrib>Prabhakaran, Poornima</creatorcontrib><creatorcontrib>Ljungman, Petter</creatorcontrib><creatorcontrib>Schwartz, Joel</creatorcontrib><collection>PubMed</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>PNAS NEXUS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Siddhartha</au><au>Rajiva, Ajit</au><au>Kloog, Itai</au><au>Menon, Jyothi S</au><au>Lane, Kevin J</au><au>Amini, Heresh</au><au>Walia, Gagandeep K</au><au>Dixit, Shweta</au><au>Nori-Sarma, Amruta</au><au>Dutta, Anubrati</au><au>Sharma, Praggya</au><au>Jaganathan, Suganthi</au><au>Madhipatla, Kishore K</au><au>Wellenius, Gregory A</au><au>de Bont, Jeroen</au><au>Venkataraman, Chandra</au><au>Prabhakaran, Dorairaj</au><au>Prabhakaran, Poornima</au><au>Ljungman, Petter</au><au>Schwartz, Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach</atitle><jtitle>PNAS NEXUS</jtitle><addtitle>PNAS Nexus</addtitle><date>2024-03</date><risdate>2024</risdate><volume>3</volume><issue>3</issue><spage>pgae088</spage><pages>pgae088-</pages><eissn>2752-6542</eissn><abstract>High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM
) pollution in India. We developed a model for daily average ambient PM
between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an
of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 μg/m
(interquartile range: 29.8-46.8) in 2008 and 30.4 μg/m
(interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-
of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 μg/m
. We obtained high spatial accuracy with spatial
greater than 90% and spatial MAE ranging between 7.3-16.5 μg/m
with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM
at a very fine spatiotemporal resolution, which allows us to study the health effects of PM
across India and to identify areas with exceedingly high levels.</abstract><cop>England</cop><pmid>38456174</pmid><doi>10.1093/pnasnexus/pgae088</doi><orcidid>https://orcid.org/0000-0002-2280-3360</orcidid><orcidid>https://orcid.org/0000-0003-3134-7026</orcidid><orcidid>https://orcid.org/0000-0002-2329-9733</orcidid><orcidid>https://orcid.org/0000-0003-0427-7376</orcidid><orcidid>https://orcid.org/0000-0001-9924-5961</orcidid><orcidid>https://orcid.org/0000-0001-6168-378X</orcidid><orcidid>https://orcid.org/0000-0001-6422-1329</orcidid><orcidid>https://orcid.org/0000-0003-2316-7180</orcidid><orcidid>https://orcid.org/0009-0004-7117-649X</orcidid><orcidid>https://orcid.org/0000-0002-1038-6811</orcidid><orcidid>https://orcid.org/0000-0001-8081-2284</orcidid><orcidid>https://orcid.org/0000-0002-7815-2632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2752-6542 |
ispartof | PNAS NEXUS, 2024-03, Vol.3 (3), p.pgae088 |
issn | 2752-6542 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_850116 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SWEPUB Freely available online |
title | Nationwide estimation of daily ambient PM 2.5 from 2008 to 2020 at 1 km 2 in India using an ensemble approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nationwide%20estimation%20of%20daily%20ambient%20PM%202.5%20from%202008%20to%202020%20at%201%20km%202%20in%20India%20using%20an%20ensemble%20approach&rft.jtitle=PNAS%20NEXUS&rft.au=Mandal,%20Siddhartha&rft.date=2024-03&rft.volume=3&rft.issue=3&rft.spage=pgae088&rft.pages=pgae088-&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgae088&rft_dat=%3Cpubmed_swepu%3E38456174%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38456174&rfr_iscdi=true |