Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model
Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine l...
Gespeichert in:
Veröffentlicht in: | EUROPEAN HEART JOURNAL: DIGITAL HEALTH 2024-05, Vol.5 (3), p.270-277 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 3 |
container_start_page | 270 |
container_title | EUROPEAN HEART JOURNAL: DIGITAL HEALTH |
container_volume | 5 |
creator | Sultanian, Pedram Lundgren, Peter Louca, Antros Andersson, Erik Djärv, Therese Hessulf, Fredrik Henningsson, Anna Martinsson, Andreas Nordberg, Per Piasecki, Adam Gupta, Vibha Mandalenakis, Zacharias Taha, Amar Redfors, Bengt Herlitz, Johan Rawshani, Araz |
description | Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine learning model for early prognostication of survival in OHCA.
We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (
= 55 615). We compared the predictive performance of extreme gradient boosting (XGB), light gradient boosting machine (LightGBM), logistic regression, CatBoost, random forest, and TabNet. For each framework, we developed models that optimized (i) a weighted F1 score to penalize models that yielded more false negatives and (ii) a precision-recall area under the curve (PR AUC). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The area under the curve receiver operating characteristic (AUC ROC) scores for LightGBM were 0.958 (optimized for weighted F1) and 0.961 (optimized for a PR AUC), while for XGB, the scores were 0.958 and 0.960, respectively. The calibration plots showed a subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0-10% likelihood of survival, the XGB model, optimized with the PR AUC, emerged as a clinically safe model.
We improved our previous prediction model by creating a parsimonious model with an AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se. |
doi_str_mv | 10.1093/ehjdh/ztae016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_847791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058638149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1b61d2f14ae3380b37c7a556b8d2ea89852ebb670d876754a6849574587485663</originalsourceid><addsrcrecordid>eNp9kstv1DAQxiMEolXpkSvysRxC7fgZLqhalYdUCcTC2XLiycZtdh382Ar-ely63bZIcPJ4_JvvG4-mql4S_Ibglp7CeGnH01_JACbiSXXYCMpq2hLx9EF8UB3HeIkxbjihFDfPqwOqpGRUksMqfwlgXZ-c3yA_oJjD1m3NhFy55lT7oR59nF0qqd4E60yPTAgQ01uURkB5tiaBRcvrohLHvxgUXLxCsfcB0MlycfZ1-RqtvYXpRfVsMFOE4915VH1_f_5t8bG--Pzh0-Lsou6ZxKkmnSC2GQgzQKnCHZW9NJyLTtkGjGoVb6DrhMRWSSE5M0KxlkvGlWSKC0GPqvpWN17DnDs9B7c24af2xuld6qpEoBWTsiWFb__Jz8Hb-6K7wuZulP_1WuVZl9Qq35RQKnDLCv_uli_wGmwPmxTM9Njy0cvGjXrlt5oQghnjbVE42SkE_yOXeeu1iz1Mk9mAz1FTzJWgirD2vrk--BgDDHsfgvXNKuk_q6R3q1T4Vw-b29P73_4Gmz_JTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058638149</pqid></control><display><type>article</type><title>Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model</title><source>SWEPUB Freely available online</source><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Sultanian, Pedram ; Lundgren, Peter ; Louca, Antros ; Andersson, Erik ; Djärv, Therese ; Hessulf, Fredrik ; Henningsson, Anna ; Martinsson, Andreas ; Nordberg, Per ; Piasecki, Adam ; Gupta, Vibha ; Mandalenakis, Zacharias ; Taha, Amar ; Redfors, Bengt ; Herlitz, Johan ; Rawshani, Araz</creator><creatorcontrib>Sultanian, Pedram ; Lundgren, Peter ; Louca, Antros ; Andersson, Erik ; Djärv, Therese ; Hessulf, Fredrik ; Henningsson, Anna ; Martinsson, Andreas ; Nordberg, Per ; Piasecki, Adam ; Gupta, Vibha ; Mandalenakis, Zacharias ; Taha, Amar ; Redfors, Bengt ; Herlitz, Johan ; Rawshani, Araz</creatorcontrib><description>Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine learning model for early prognostication of survival in OHCA.
We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (
= 55 615). We compared the predictive performance of extreme gradient boosting (XGB), light gradient boosting machine (LightGBM), logistic regression, CatBoost, random forest, and TabNet. For each framework, we developed models that optimized (i) a weighted F1 score to penalize models that yielded more false negatives and (ii) a precision-recall area under the curve (PR AUC). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The area under the curve receiver operating characteristic (AUC ROC) scores for LightGBM were 0.958 (optimized for weighted F1) and 0.961 (optimized for a PR AUC), while for XGB, the scores were 0.958 and 0.960, respectively. The calibration plots showed a subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0-10% likelihood of survival, the XGB model, optimized with the PR AUC, emerged as a clinically safe model.
We improved our previous prediction model by creating a parsimonious model with an AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se.</description><identifier>ISSN: 2634-3916</identifier><identifier>EISSN: 2634-3916</identifier><identifier>DOI: 10.1093/ehjdh/ztae016</identifier><identifier>PMID: 38774371</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cardiac and Cardiovascular Systems ; Extreme gradient boosting ; Kardiologi ; LightGBM ; Machine learning ; Medicin och hälsovetenskap ; Original ; Out-of-hospital cardiac arrest</subject><ispartof>EUROPEAN HEART JOURNAL: DIGITAL HEALTH, 2024-05, Vol.5 (3), p.270-277</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c470t-1b61d2f14ae3380b37c7a556b8d2ea89852ebb670d876754a6849574587485663</cites><orcidid>0000-0002-6941-6659 ; 0000-0003-0500-4070 ; 0000-0003-4139-6235 ; 0000-0001-5093-9743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104459/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104459/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38774371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/336094$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:238774371$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sultanian, Pedram</creatorcontrib><creatorcontrib>Lundgren, Peter</creatorcontrib><creatorcontrib>Louca, Antros</creatorcontrib><creatorcontrib>Andersson, Erik</creatorcontrib><creatorcontrib>Djärv, Therese</creatorcontrib><creatorcontrib>Hessulf, Fredrik</creatorcontrib><creatorcontrib>Henningsson, Anna</creatorcontrib><creatorcontrib>Martinsson, Andreas</creatorcontrib><creatorcontrib>Nordberg, Per</creatorcontrib><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Gupta, Vibha</creatorcontrib><creatorcontrib>Mandalenakis, Zacharias</creatorcontrib><creatorcontrib>Taha, Amar</creatorcontrib><creatorcontrib>Redfors, Bengt</creatorcontrib><creatorcontrib>Herlitz, Johan</creatorcontrib><creatorcontrib>Rawshani, Araz</creatorcontrib><title>Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model</title><title>EUROPEAN HEART JOURNAL: DIGITAL HEALTH</title><addtitle>Eur Heart J Digit Health</addtitle><description>Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine learning model for early prognostication of survival in OHCA.
We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (
= 55 615). We compared the predictive performance of extreme gradient boosting (XGB), light gradient boosting machine (LightGBM), logistic regression, CatBoost, random forest, and TabNet. For each framework, we developed models that optimized (i) a weighted F1 score to penalize models that yielded more false negatives and (ii) a precision-recall area under the curve (PR AUC). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The area under the curve receiver operating characteristic (AUC ROC) scores for LightGBM were 0.958 (optimized for weighted F1) and 0.961 (optimized for a PR AUC), while for XGB, the scores were 0.958 and 0.960, respectively. The calibration plots showed a subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0-10% likelihood of survival, the XGB model, optimized with the PR AUC, emerged as a clinically safe model.
We improved our previous prediction model by creating a parsimonious model with an AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se.</description><subject>Cardiac and Cardiovascular Systems</subject><subject>Extreme gradient boosting</subject><subject>Kardiologi</subject><subject>LightGBM</subject><subject>Machine learning</subject><subject>Medicin och hälsovetenskap</subject><subject>Original</subject><subject>Out-of-hospital cardiac arrest</subject><issn>2634-3916</issn><issn>2634-3916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kstv1DAQxiMEolXpkSvysRxC7fgZLqhalYdUCcTC2XLiycZtdh382Ar-ely63bZIcPJ4_JvvG4-mql4S_Ibglp7CeGnH01_JACbiSXXYCMpq2hLx9EF8UB3HeIkxbjihFDfPqwOqpGRUksMqfwlgXZ-c3yA_oJjD1m3NhFy55lT7oR59nF0qqd4E60yPTAgQ01uURkB5tiaBRcvrohLHvxgUXLxCsfcB0MlycfZ1-RqtvYXpRfVsMFOE4915VH1_f_5t8bG--Pzh0-Lsou6ZxKkmnSC2GQgzQKnCHZW9NJyLTtkGjGoVb6DrhMRWSSE5M0KxlkvGlWSKC0GPqvpWN17DnDs9B7c24af2xuld6qpEoBWTsiWFb__Jz8Hb-6K7wuZulP_1WuVZl9Qq35RQKnDLCv_uli_wGmwPmxTM9Njy0cvGjXrlt5oQghnjbVE42SkE_yOXeeu1iz1Mk9mAz1FTzJWgirD2vrk--BgDDHsfgvXNKuk_q6R3q1T4Vw-b29P73_4Gmz_JTQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Sultanian, Pedram</creator><creator>Lundgren, Peter</creator><creator>Louca, Antros</creator><creator>Andersson, Erik</creator><creator>Djärv, Therese</creator><creator>Hessulf, Fredrik</creator><creator>Henningsson, Anna</creator><creator>Martinsson, Andreas</creator><creator>Nordberg, Per</creator><creator>Piasecki, Adam</creator><creator>Gupta, Vibha</creator><creator>Mandalenakis, Zacharias</creator><creator>Taha, Amar</creator><creator>Redfors, Bengt</creator><creator>Herlitz, Johan</creator><creator>Rawshani, Araz</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6941-6659</orcidid><orcidid>https://orcid.org/0000-0003-0500-4070</orcidid><orcidid>https://orcid.org/0000-0003-4139-6235</orcidid><orcidid>https://orcid.org/0000-0001-5093-9743</orcidid></search><sort><creationdate>20240501</creationdate><title>Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model</title><author>Sultanian, Pedram ; Lundgren, Peter ; Louca, Antros ; Andersson, Erik ; Djärv, Therese ; Hessulf, Fredrik ; Henningsson, Anna ; Martinsson, Andreas ; Nordberg, Per ; Piasecki, Adam ; Gupta, Vibha ; Mandalenakis, Zacharias ; Taha, Amar ; Redfors, Bengt ; Herlitz, Johan ; Rawshani, Araz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1b61d2f14ae3380b37c7a556b8d2ea89852ebb670d876754a6849574587485663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cardiac and Cardiovascular Systems</topic><topic>Extreme gradient boosting</topic><topic>Kardiologi</topic><topic>LightGBM</topic><topic>Machine learning</topic><topic>Medicin och hälsovetenskap</topic><topic>Original</topic><topic>Out-of-hospital cardiac arrest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sultanian, Pedram</creatorcontrib><creatorcontrib>Lundgren, Peter</creatorcontrib><creatorcontrib>Louca, Antros</creatorcontrib><creatorcontrib>Andersson, Erik</creatorcontrib><creatorcontrib>Djärv, Therese</creatorcontrib><creatorcontrib>Hessulf, Fredrik</creatorcontrib><creatorcontrib>Henningsson, Anna</creatorcontrib><creatorcontrib>Martinsson, Andreas</creatorcontrib><creatorcontrib>Nordberg, Per</creatorcontrib><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Gupta, Vibha</creatorcontrib><creatorcontrib>Mandalenakis, Zacharias</creatorcontrib><creatorcontrib>Taha, Amar</creatorcontrib><creatorcontrib>Redfors, Bengt</creatorcontrib><creatorcontrib>Herlitz, Johan</creatorcontrib><creatorcontrib>Rawshani, Araz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>EUROPEAN HEART JOURNAL: DIGITAL HEALTH</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sultanian, Pedram</au><au>Lundgren, Peter</au><au>Louca, Antros</au><au>Andersson, Erik</au><au>Djärv, Therese</au><au>Hessulf, Fredrik</au><au>Henningsson, Anna</au><au>Martinsson, Andreas</au><au>Nordberg, Per</au><au>Piasecki, Adam</au><au>Gupta, Vibha</au><au>Mandalenakis, Zacharias</au><au>Taha, Amar</au><au>Redfors, Bengt</au><au>Herlitz, Johan</au><au>Rawshani, Araz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model</atitle><jtitle>EUROPEAN HEART JOURNAL: DIGITAL HEALTH</jtitle><addtitle>Eur Heart J Digit Health</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>270</spage><epage>277</epage><pages>270-277</pages><issn>2634-3916</issn><eissn>2634-3916</eissn><abstract>Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine learning model for early prognostication of survival in OHCA.
We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (
= 55 615). We compared the predictive performance of extreme gradient boosting (XGB), light gradient boosting machine (LightGBM), logistic regression, CatBoost, random forest, and TabNet. For each framework, we developed models that optimized (i) a weighted F1 score to penalize models that yielded more false negatives and (ii) a precision-recall area under the curve (PR AUC). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The area under the curve receiver operating characteristic (AUC ROC) scores for LightGBM were 0.958 (optimized for weighted F1) and 0.961 (optimized for a PR AUC), while for XGB, the scores were 0.958 and 0.960, respectively. The calibration plots showed a subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0-10% likelihood of survival, the XGB model, optimized with the PR AUC, emerged as a clinically safe model.
We improved our previous prediction model by creating a parsimonious model with an AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38774371</pmid><doi>10.1093/ehjdh/ztae016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6941-6659</orcidid><orcidid>https://orcid.org/0000-0003-0500-4070</orcidid><orcidid>https://orcid.org/0000-0003-4139-6235</orcidid><orcidid>https://orcid.org/0000-0001-5093-9743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2634-3916 |
ispartof | EUROPEAN HEART JOURNAL: DIGITAL HEALTH, 2024-05, Vol.5 (3), p.270-277 |
issn | 2634-3916 2634-3916 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_847791 |
source | SWEPUB Freely available online; Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Cardiac and Cardiovascular Systems Extreme gradient boosting Kardiologi LightGBM Machine learning Medicin och hälsovetenskap Original Out-of-hospital cardiac arrest |
title | Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20survival%20in%20out-of-hospital%20cardiac%20arrest:%20the%20updated%20Swedish%20cardiac%20arrest%20risk%20score%20(SCARS)%20model&rft.jtitle=EUROPEAN%20HEART%20JOURNAL:%20DIGITAL%20HEALTH&rft.au=Sultanian,%20Pedram&rft.date=2024-05-01&rft.volume=5&rft.issue=3&rft.spage=270&rft.epage=277&rft.pages=270-277&rft.issn=2634-3916&rft.eissn=2634-3916&rft_id=info:doi/10.1093/ehjdh/ztae016&rft_dat=%3Cproquest_swepu%3E3058638149%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058638149&rft_id=info:pmid/38774371&rfr_iscdi=true |