Polygenic liability for antipsychotic dosage and polypharmacy - a real-world registry and biobank study
Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of a...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2024-06, Vol.49 (7), p.1113-1119 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05-1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry. |
---|---|
ISSN: | 0893-133X 1740-634X |
DOI: | 10.1038/s41386-023-01792-0 |