Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte
Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile sync...
Gespeichert in:
Veröffentlicht in: | Circulation research 2023-07, Vol.133 (3), p.255-270 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 3 |
container_start_page | 255 |
container_title | Circulation research |
container_volume | 133 |
creator | Li, Jia Sundnes, Joakim Hou, Yufeng Laasmaa, Martin Ruud, Marianne Unger, Andreas Kolstad, Terje R. Frisk, Michael Norseng, Per Andreas Yang, Limin Setterberg, Ingunn E. Alves, Estela S. Kalakoutis, Michaeljohn Sejersted, Ole M. Lanner, Johanna T. Linke, Wolfgang A. Lunde, Ida G. de Tombe, Pieter P. Louch, William E. |
description | Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening.
Sarcomere strain and Ca
were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch.
We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca
disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening.
Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility. |
doi_str_mv | 10.1161/CIRCRESAHA.123.322588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_639185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833025508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5547-d5f2aefc1d54fb1f4ecfbd51a35fbc35846cab3d623428a2ba3e284d14aea3203</originalsourceid><addsrcrecordid>eNpdkm9v0zAQxi0EYmXwEUB5yV6k-PwncSUkFEVjnVQJaYXXluNcSFgSDztdVT49rtJtjDf26e53j31-TMh7oEuADD6V1zflzeW2WBdLYHzJGZNKvSALkEykQubwkiwopas055yekTch_KIUBGer1-SM5yLGmViQz9vJ42TbZG384MbuD4Zka7x1A3pMYtF0Y1JY70JIphaT0vi6c8PB2cOEb8mrxvQB3532c_Lj6-X3cp1uvl1dl8UmtVKKPK1lwww2FmopmgoagbapagmGy6ayXCqRWVPxOmNcMGVYZTgyJWoQBg1nlJ-TdNYNe7zbVfrOd4PxB-1Mp0-p2xihzvgKlIz8l5mPlQFri2Oco3_W9rwydq3-6e41UC6lokeFi1mh_a9vXWz0MUcFSMipvIfIJjNrfRembtSj8yZKKcnimjHIIvLxdCHvfu8wTHrogsW-NyO6XdBMRZOYlFRFVD6oxTf32DweD1QfnddPzuvovJ6dj30f_p35sevB6giIGdi7fkIfbvvdHr1u0fRTq-NXoZwCSxllnOYMaHpM5fwvNHO5jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833025508</pqid></control><display><type>article</type><title>Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>American Heart Association Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><source>Journals@Ovid Complete</source><creator>Li, Jia ; Sundnes, Joakim ; Hou, Yufeng ; Laasmaa, Martin ; Ruud, Marianne ; Unger, Andreas ; Kolstad, Terje R. ; Frisk, Michael ; Norseng, Per Andreas ; Yang, Limin ; Setterberg, Ingunn E. ; Alves, Estela S. ; Kalakoutis, Michaeljohn ; Sejersted, Ole M. ; Lanner, Johanna T. ; Linke, Wolfgang A. ; Lunde, Ida G. ; de Tombe, Pieter P. ; Louch, William E.</creator><creatorcontrib>Li, Jia ; Sundnes, Joakim ; Hou, Yufeng ; Laasmaa, Martin ; Ruud, Marianne ; Unger, Andreas ; Kolstad, Terje R. ; Frisk, Michael ; Norseng, Per Andreas ; Yang, Limin ; Setterberg, Ingunn E. ; Alves, Estela S. ; Kalakoutis, Michaeljohn ; Sejersted, Ole M. ; Lanner, Johanna T. ; Linke, Wolfgang A. ; Lunde, Ida G. ; de Tombe, Pieter P. ; Louch, William E.</creatorcontrib><description>Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening.
Sarcomere strain and Ca
were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch.
We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca
disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening.
Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.123.322588</identifier><identifier>PMID: 37401464</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Animals ; Connectin - genetics ; Connectin - metabolism ; Life Sciences ; Mice ; Myocardial Contraction - physiology ; Myocardium - metabolism ; Myocytes, Cardiac - metabolism ; Original Research ; Rats ; Sarcomeres - metabolism</subject><ispartof>Circulation research, 2023-07, Vol.133 (3), p.255-270</ispartof><rights>Lippincott Williams & Wilkins</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5547-d5f2aefc1d54fb1f4ecfbd51a35fbc35846cab3d623428a2ba3e284d14aea3203</citedby><cites>FETCH-LOGICAL-c5547-d5f2aefc1d54fb1f4ecfbd51a35fbc35846cab3d623428a2ba3e284d14aea3203</cites><orcidid>0000-0001-9502-6841 ; 0000-0002-0511-6112 ; 0000-0003-0801-3773 ; 0000-0002-1890-7722 ; 0009-0001-1672-544X ; 0000-0002-6663-6947 ; 0000-0002-3429-5869 ; 0000-0002-1222-9473 ; 0000-0003-3178-0233 ; 0000-0003-3062-2647 ; 0000-0001-8817-3296 ; 0000-0001-8084-0859 ; 0000-0003-0278-7831 ; 0000-0002-5157-2581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,881,3674,26544,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37401464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04151705$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153302990$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Hou, Yufeng</creatorcontrib><creatorcontrib>Laasmaa, Martin</creatorcontrib><creatorcontrib>Ruud, Marianne</creatorcontrib><creatorcontrib>Unger, Andreas</creatorcontrib><creatorcontrib>Kolstad, Terje R.</creatorcontrib><creatorcontrib>Frisk, Michael</creatorcontrib><creatorcontrib>Norseng, Per Andreas</creatorcontrib><creatorcontrib>Yang, Limin</creatorcontrib><creatorcontrib>Setterberg, Ingunn E.</creatorcontrib><creatorcontrib>Alves, Estela S.</creatorcontrib><creatorcontrib>Kalakoutis, Michaeljohn</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Lanner, Johanna T.</creatorcontrib><creatorcontrib>Linke, Wolfgang A.</creatorcontrib><creatorcontrib>Lunde, Ida G.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><creatorcontrib>Louch, William E.</creatorcontrib><title>Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening.
Sarcomere strain and Ca
were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch.
We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca
disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening.
Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.</description><subject>Animals</subject><subject>Connectin - genetics</subject><subject>Connectin - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Original Research</subject><subject>Rats</subject><subject>Sarcomeres - metabolism</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNpdkm9v0zAQxi0EYmXwEUB5yV6k-PwncSUkFEVjnVQJaYXXluNcSFgSDztdVT49rtJtjDf26e53j31-TMh7oEuADD6V1zflzeW2WBdLYHzJGZNKvSALkEykQubwkiwopas055yekTch_KIUBGer1-SM5yLGmViQz9vJ42TbZG384MbuD4Zka7x1A3pMYtF0Y1JY70JIphaT0vi6c8PB2cOEb8mrxvQB3532c_Lj6-X3cp1uvl1dl8UmtVKKPK1lwww2FmopmgoagbapagmGy6ayXCqRWVPxOmNcMGVYZTgyJWoQBg1nlJ-TdNYNe7zbVfrOd4PxB-1Mp0-p2xihzvgKlIz8l5mPlQFri2Oco3_W9rwydq3-6e41UC6lokeFi1mh_a9vXWz0MUcFSMipvIfIJjNrfRembtSj8yZKKcnimjHIIvLxdCHvfu8wTHrogsW-NyO6XdBMRZOYlFRFVD6oxTf32DweD1QfnddPzuvovJ6dj30f_p35sevB6giIGdi7fkIfbvvdHr1u0fRTq-NXoZwCSxllnOYMaHpM5fwvNHO5jQ</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>Li, Jia</creator><creator>Sundnes, Joakim</creator><creator>Hou, Yufeng</creator><creator>Laasmaa, Martin</creator><creator>Ruud, Marianne</creator><creator>Unger, Andreas</creator><creator>Kolstad, Terje R.</creator><creator>Frisk, Michael</creator><creator>Norseng, Per Andreas</creator><creator>Yang, Limin</creator><creator>Setterberg, Ingunn E.</creator><creator>Alves, Estela S.</creator><creator>Kalakoutis, Michaeljohn</creator><creator>Sejersted, Ole M.</creator><creator>Lanner, Johanna T.</creator><creator>Linke, Wolfgang A.</creator><creator>Lunde, Ida G.</creator><creator>de Tombe, Pieter P.</creator><creator>Louch, William E.</creator><general>Lippincott Williams & Wilkins</general><general>American Heart Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9502-6841</orcidid><orcidid>https://orcid.org/0000-0002-0511-6112</orcidid><orcidid>https://orcid.org/0000-0003-0801-3773</orcidid><orcidid>https://orcid.org/0000-0002-1890-7722</orcidid><orcidid>https://orcid.org/0009-0001-1672-544X</orcidid><orcidid>https://orcid.org/0000-0002-6663-6947</orcidid><orcidid>https://orcid.org/0000-0002-3429-5869</orcidid><orcidid>https://orcid.org/0000-0002-1222-9473</orcidid><orcidid>https://orcid.org/0000-0003-3178-0233</orcidid><orcidid>https://orcid.org/0000-0003-3062-2647</orcidid><orcidid>https://orcid.org/0000-0001-8817-3296</orcidid><orcidid>https://orcid.org/0000-0001-8084-0859</orcidid><orcidid>https://orcid.org/0000-0003-0278-7831</orcidid><orcidid>https://orcid.org/0000-0002-5157-2581</orcidid></search><sort><creationdate>20230721</creationdate><title>Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte</title><author>Li, Jia ; Sundnes, Joakim ; Hou, Yufeng ; Laasmaa, Martin ; Ruud, Marianne ; Unger, Andreas ; Kolstad, Terje R. ; Frisk, Michael ; Norseng, Per Andreas ; Yang, Limin ; Setterberg, Ingunn E. ; Alves, Estela S. ; Kalakoutis, Michaeljohn ; Sejersted, Ole M. ; Lanner, Johanna T. ; Linke, Wolfgang A. ; Lunde, Ida G. ; de Tombe, Pieter P. ; Louch, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5547-d5f2aefc1d54fb1f4ecfbd51a35fbc35846cab3d623428a2ba3e284d14aea3203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Connectin - genetics</topic><topic>Connectin - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Original Research</topic><topic>Rats</topic><topic>Sarcomeres - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Sundnes, Joakim</creatorcontrib><creatorcontrib>Hou, Yufeng</creatorcontrib><creatorcontrib>Laasmaa, Martin</creatorcontrib><creatorcontrib>Ruud, Marianne</creatorcontrib><creatorcontrib>Unger, Andreas</creatorcontrib><creatorcontrib>Kolstad, Terje R.</creatorcontrib><creatorcontrib>Frisk, Michael</creatorcontrib><creatorcontrib>Norseng, Per Andreas</creatorcontrib><creatorcontrib>Yang, Limin</creatorcontrib><creatorcontrib>Setterberg, Ingunn E.</creatorcontrib><creatorcontrib>Alves, Estela S.</creatorcontrib><creatorcontrib>Kalakoutis, Michaeljohn</creatorcontrib><creatorcontrib>Sejersted, Ole M.</creatorcontrib><creatorcontrib>Lanner, Johanna T.</creatorcontrib><creatorcontrib>Linke, Wolfgang A.</creatorcontrib><creatorcontrib>Lunde, Ida G.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><creatorcontrib>Louch, William E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia</au><au>Sundnes, Joakim</au><au>Hou, Yufeng</au><au>Laasmaa, Martin</au><au>Ruud, Marianne</au><au>Unger, Andreas</au><au>Kolstad, Terje R.</au><au>Frisk, Michael</au><au>Norseng, Per Andreas</au><au>Yang, Limin</au><au>Setterberg, Ingunn E.</au><au>Alves, Estela S.</au><au>Kalakoutis, Michaeljohn</au><au>Sejersted, Ole M.</au><au>Lanner, Johanna T.</au><au>Linke, Wolfgang A.</au><au>Lunde, Ida G.</au><au>de Tombe, Pieter P.</au><au>Louch, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2023-07-21</date><risdate>2023</risdate><volume>133</volume><issue>3</issue><spage>255</spage><epage>270</epage><pages>255-270</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening.
Sarcomere strain and Ca
were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch.
We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca
disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening.
Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>37401464</pmid><doi>10.1161/CIRCRESAHA.123.322588</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9502-6841</orcidid><orcidid>https://orcid.org/0000-0002-0511-6112</orcidid><orcidid>https://orcid.org/0000-0003-0801-3773</orcidid><orcidid>https://orcid.org/0000-0002-1890-7722</orcidid><orcidid>https://orcid.org/0009-0001-1672-544X</orcidid><orcidid>https://orcid.org/0000-0002-6663-6947</orcidid><orcidid>https://orcid.org/0000-0002-3429-5869</orcidid><orcidid>https://orcid.org/0000-0002-1222-9473</orcidid><orcidid>https://orcid.org/0000-0003-3178-0233</orcidid><orcidid>https://orcid.org/0000-0003-3062-2647</orcidid><orcidid>https://orcid.org/0000-0001-8817-3296</orcidid><orcidid>https://orcid.org/0000-0001-8084-0859</orcidid><orcidid>https://orcid.org/0000-0003-0278-7831</orcidid><orcidid>https://orcid.org/0000-0002-5157-2581</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2023-07, Vol.133 (3), p.255-270 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_639185 |
source | MEDLINE; NORA - Norwegian Open Research Archives; American Heart Association Journals; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online; Journals@Ovid Complete |
subjects | Animals Connectin - genetics Connectin - metabolism Life Sciences Mice Myocardial Contraction - physiology Myocardium - metabolism Myocytes, Cardiac - metabolism Original Research Rats Sarcomeres - metabolism |
title | Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretch%20Harmonizes%20Sarcomere%20Strain%20Across%20the%20Cardiomyocyte&rft.jtitle=Circulation%20research&rft.au=Li,%20Jia&rft.date=2023-07-21&rft.volume=133&rft.issue=3&rft.spage=255&rft.epage=270&rft.pages=255-270&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.123.322588&rft_dat=%3Cproquest_swepu%3E2833025508%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833025508&rft_id=info:pmid/37401464&rfr_iscdi=true |