Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice
ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 1999-12, Vol.13 (15), p.2246-2256 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2256 |
---|---|
container_issue | 15 |
container_start_page | 2246 |
container_title | The FASEB journal |
container_volume | 13 |
creator | RYDER, JEFFREY W. KAWANO, YUICHI GALUSKA, DANA FAHLMAN, ROGER WALLBERG‐HENRIKSSON, HARRIET CHARRON, MAUREEN J. ZIERATH, JULEEN R. |
description | ABSTRACT
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999) |
doi_str_mv | 10.1096/fasebj.13.15.2246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_603416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69351172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</originalsourceid><addsrcrecordid>eNqFkU1OwzAQhS0EglI4ABuUFbsUjx07ybKglh9VAqllbbnOBEzzU-JE0B1H4IycBEMqxI7V2E_fvBn7EXICdAQ0lee5drh8HgEfgRgxFskdMgDBaSgTSXfJgCYpC6XkyQE5dO6ZUgoU5D45ACpSnsRsQPR97Vp8w8ZYh8Fj0Zna127d6hUGusq8tDH1I1aB21TtEzrrAusvKyyw1UVQds4UGORNXQZXs4dF9Pn-kWFujcWqDUpr8Ijs5bpweLytQ_IwnSwur8PZ3dXN5XgWGsGYDJFhxjiILAWGMWQyifNIa21EmnApUyO0YHEueEaXaaRRRizmII1I_JsyDXxIwt7XveK6W6p1Y0vdbFStrdpKK39CJSmPQHr-rOfXTf3SoWtVaZ3BotAV1p1TMuUCIGb_ghBHPIk8PiTQg6apnWsw_90BqPoOTPWBKeAKhPoOzPecbs27ZYnZn44-IQ-Me-DVFrj531FN5xdsOp5PLm7Bf-fPkC9bdqgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17438469</pqid></control><display><type>article</type><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</creator><creatorcontrib>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</creatorcontrib><description>ABSTRACT
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fasebj.13.15.2246</identifier><identifier>PMID: 10593872</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Biological Transport ; Blood Glucose - metabolism ; Dietary Carbohydrates ; electrical stimulation ; Fasting ; Glucose - metabolism ; glucose transport ; glucose transporter ; Glucose Transporter Type 1 ; Glucose Transporter Type 4 ; GLUT4 protein ; glycogen ; Glycogen - biosynthesis ; Glycogen - metabolism ; glycogen synthase ; Glycogen Synthase - metabolism ; Liver - metabolism ; Male ; Membrane Proteins - metabolism ; metabolism ; Mice ; Mice, Inbred C57BL ; Monosaccharide Transport Proteins - deficiency ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Muscle Contraction - physiology ; Muscle Proteins ; Muscle, Skeletal - metabolism ; physical exercise ; Physical Exertion ; Space life sciences</subject><ispartof>The FASEB journal, 1999-12, Vol.13 (15), p.2246-2256</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</citedby><cites>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffasebj.13.15.2246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffasebj.13.15.2246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10593872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:1929886$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>RYDER, JEFFREY W.</creatorcontrib><creatorcontrib>KAWANO, YUICHI</creatorcontrib><creatorcontrib>GALUSKA, DANA</creatorcontrib><creatorcontrib>FAHLMAN, ROGER</creatorcontrib><creatorcontrib>WALLBERG‐HENRIKSSON, HARRIET</creatorcontrib><creatorcontrib>CHARRON, MAUREEN J.</creatorcontrib><creatorcontrib>ZIERATH, JULEEN R.</creatorcontrib><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Blood Glucose - metabolism</subject><subject>Dietary Carbohydrates</subject><subject>electrical stimulation</subject><subject>Fasting</subject><subject>Glucose - metabolism</subject><subject>glucose transport</subject><subject>glucose transporter</subject><subject>Glucose Transporter Type 1</subject><subject>Glucose Transporter Type 4</subject><subject>GLUT4 protein</subject><subject>glycogen</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen - metabolism</subject><subject>glycogen synthase</subject><subject>Glycogen Synthase - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Monosaccharide Transport Proteins - deficiency</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Proteins</subject><subject>Muscle, Skeletal - metabolism</subject><subject>physical exercise</subject><subject>Physical Exertion</subject><subject>Space life sciences</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1OwzAQhS0EglI4ABuUFbsUjx07ybKglh9VAqllbbnOBEzzU-JE0B1H4IycBEMqxI7V2E_fvBn7EXICdAQ0lee5drh8HgEfgRgxFskdMgDBaSgTSXfJgCYpC6XkyQE5dO6ZUgoU5D45ACpSnsRsQPR97Vp8w8ZYh8Fj0Zna127d6hUGusq8tDH1I1aB21TtEzrrAusvKyyw1UVQds4UGORNXQZXs4dF9Pn-kWFujcWqDUpr8Ijs5bpweLytQ_IwnSwur8PZ3dXN5XgWGsGYDJFhxjiILAWGMWQyifNIa21EmnApUyO0YHEueEaXaaRRRizmII1I_JsyDXxIwt7XveK6W6p1Y0vdbFStrdpKK39CJSmPQHr-rOfXTf3SoWtVaZ3BotAV1p1TMuUCIGb_ghBHPIk8PiTQg6apnWsw_90BqPoOTPWBKeAKhPoOzPecbs27ZYnZn44-IQ-Me-DVFrj531FN5xdsOp5PLm7Bf-fPkC9bdqgH</recordid><startdate>199912</startdate><enddate>199912</enddate><creator>RYDER, JEFFREY W.</creator><creator>KAWANO, YUICHI</creator><creator>GALUSKA, DANA</creator><creator>FAHLMAN, ROGER</creator><creator>WALLBERG‐HENRIKSSON, HARRIET</creator><creator>CHARRON, MAUREEN J.</creator><creator>ZIERATH, JULEEN R.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>199912</creationdate><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><author>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Blood Glucose - metabolism</topic><topic>Dietary Carbohydrates</topic><topic>electrical stimulation</topic><topic>Fasting</topic><topic>Glucose - metabolism</topic><topic>glucose transport</topic><topic>glucose transporter</topic><topic>Glucose Transporter Type 1</topic><topic>Glucose Transporter Type 4</topic><topic>GLUT4 protein</topic><topic>glycogen</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen - metabolism</topic><topic>glycogen synthase</topic><topic>Glycogen Synthase - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Monosaccharide Transport Proteins - deficiency</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Proteins</topic><topic>Muscle, Skeletal - metabolism</topic><topic>physical exercise</topic><topic>Physical Exertion</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RYDER, JEFFREY W.</creatorcontrib><creatorcontrib>KAWANO, YUICHI</creatorcontrib><creatorcontrib>GALUSKA, DANA</creatorcontrib><creatorcontrib>FAHLMAN, ROGER</creatorcontrib><creatorcontrib>WALLBERG‐HENRIKSSON, HARRIET</creatorcontrib><creatorcontrib>CHARRON, MAUREEN J.</creatorcontrib><creatorcontrib>ZIERATH, JULEEN R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RYDER, JEFFREY W.</au><au>KAWANO, YUICHI</au><au>GALUSKA, DANA</au><au>FAHLMAN, ROGER</au><au>WALLBERG‐HENRIKSSON, HARRIET</au><au>CHARRON, MAUREEN J.</au><au>ZIERATH, JULEEN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>1999-12</date><risdate>1999</risdate><volume>13</volume><issue>15</issue><spage>2246</spage><epage>2256</epage><pages>2246-2256</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</abstract><cop>United States</cop><pmid>10593872</pmid><doi>10.1096/fasebj.13.15.2246</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 1999-12, Vol.13 (15), p.2246-2256 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_603416 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Animals Biological Transport Blood Glucose - metabolism Dietary Carbohydrates electrical stimulation Fasting Glucose - metabolism glucose transport glucose transporter Glucose Transporter Type 1 Glucose Transporter Type 4 GLUT4 protein glycogen Glycogen - biosynthesis Glycogen - metabolism glycogen synthase Glycogen Synthase - metabolism Liver - metabolism Male Membrane Proteins - metabolism metabolism Mice Mice, Inbred C57BL Monosaccharide Transport Proteins - deficiency Monosaccharide Transport Proteins - genetics Monosaccharide Transport Proteins - metabolism Muscle Contraction - physiology Muscle Proteins Muscle, Skeletal - metabolism physical exercise Physical Exertion Space life sciences |
title | Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postexercise%20glucose%20uptake%20and%20glycogen%20synthesis%20in%20skeletal%20muscle%20from%20GLUT4%E2%80%90deficient%20mice&rft.jtitle=The%20FASEB%20journal&rft.au=RYDER,%20JEFFREY%20W.&rft.date=1999-12&rft.volume=13&rft.issue=15&rft.spage=2246&rft.epage=2256&rft.pages=2246-2256&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fasebj.13.15.2246&rft_dat=%3Cproquest_swepu%3E69351172%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17438469&rft_id=info:pmid/10593872&rfr_iscdi=true |