Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice

ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 1999-12, Vol.13 (15), p.2246-2256
Hauptverfasser: RYDER, JEFFREY W., KAWANO, YUICHI, GALUSKA, DANA, FAHLMAN, ROGER, WALLBERG‐HENRIKSSON, HARRIET, CHARRON, MAUREEN J., ZIERATH, JULEEN R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2256
container_issue 15
container_start_page 2246
container_title The FASEB journal
container_volume 13
creator RYDER, JEFFREY W.
KAWANO, YUICHI
GALUSKA, DANA
FAHLMAN, ROGER
WALLBERG‐HENRIKSSON, HARRIET
CHARRON, MAUREEN J.
ZIERATH, JULEEN R.
description ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)
doi_str_mv 10.1096/fasebj.13.15.2246
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_603416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69351172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</originalsourceid><addsrcrecordid>eNqFkU1OwzAQhS0EglI4ABuUFbsUjx07ybKglh9VAqllbbnOBEzzU-JE0B1H4IycBEMqxI7V2E_fvBn7EXICdAQ0lee5drh8HgEfgRgxFskdMgDBaSgTSXfJgCYpC6XkyQE5dO6ZUgoU5D45ACpSnsRsQPR97Vp8w8ZYh8Fj0Zna127d6hUGusq8tDH1I1aB21TtEzrrAusvKyyw1UVQds4UGORNXQZXs4dF9Pn-kWFujcWqDUpr8Ijs5bpweLytQ_IwnSwur8PZ3dXN5XgWGsGYDJFhxjiILAWGMWQyifNIa21EmnApUyO0YHEueEaXaaRRRizmII1I_JsyDXxIwt7XveK6W6p1Y0vdbFStrdpKK39CJSmPQHr-rOfXTf3SoWtVaZ3BotAV1p1TMuUCIGb_ghBHPIk8PiTQg6apnWsw_90BqPoOTPWBKeAKhPoOzPecbs27ZYnZn44-IQ-Me-DVFrj531FN5xdsOp5PLm7Bf-fPkC9bdqgH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17438469</pqid></control><display><type>article</type><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</creator><creatorcontrib>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</creatorcontrib><description>ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fasebj.13.15.2246</identifier><identifier>PMID: 10593872</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Biological Transport ; Blood Glucose - metabolism ; Dietary Carbohydrates ; electrical stimulation ; Fasting ; Glucose - metabolism ; glucose transport ; glucose transporter ; Glucose Transporter Type 1 ; Glucose Transporter Type 4 ; GLUT4 protein ; glycogen ; Glycogen - biosynthesis ; Glycogen - metabolism ; glycogen synthase ; Glycogen Synthase - metabolism ; Liver - metabolism ; Male ; Membrane Proteins - metabolism ; metabolism ; Mice ; Mice, Inbred C57BL ; Monosaccharide Transport Proteins - deficiency ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Muscle Contraction - physiology ; Muscle Proteins ; Muscle, Skeletal - metabolism ; physical exercise ; Physical Exertion ; Space life sciences</subject><ispartof>The FASEB journal, 1999-12, Vol.13 (15), p.2246-2256</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</citedby><cites>FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffasebj.13.15.2246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffasebj.13.15.2246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10593872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:1929886$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>RYDER, JEFFREY W.</creatorcontrib><creatorcontrib>KAWANO, YUICHI</creatorcontrib><creatorcontrib>GALUSKA, DANA</creatorcontrib><creatorcontrib>FAHLMAN, ROGER</creatorcontrib><creatorcontrib>WALLBERG‐HENRIKSSON, HARRIET</creatorcontrib><creatorcontrib>CHARRON, MAUREEN J.</creatorcontrib><creatorcontrib>ZIERATH, JULEEN R.</creatorcontrib><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Blood Glucose - metabolism</subject><subject>Dietary Carbohydrates</subject><subject>electrical stimulation</subject><subject>Fasting</subject><subject>Glucose - metabolism</subject><subject>glucose transport</subject><subject>glucose transporter</subject><subject>Glucose Transporter Type 1</subject><subject>Glucose Transporter Type 4</subject><subject>GLUT4 protein</subject><subject>glycogen</subject><subject>Glycogen - biosynthesis</subject><subject>Glycogen - metabolism</subject><subject>glycogen synthase</subject><subject>Glycogen Synthase - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Monosaccharide Transport Proteins - deficiency</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Proteins</subject><subject>Muscle, Skeletal - metabolism</subject><subject>physical exercise</subject><subject>Physical Exertion</subject><subject>Space life sciences</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1OwzAQhS0EglI4ABuUFbsUjx07ybKglh9VAqllbbnOBEzzU-JE0B1H4IycBEMqxI7V2E_fvBn7EXICdAQ0lee5drh8HgEfgRgxFskdMgDBaSgTSXfJgCYpC6XkyQE5dO6ZUgoU5D45ACpSnsRsQPR97Vp8w8ZYh8Fj0Zna127d6hUGusq8tDH1I1aB21TtEzrrAusvKyyw1UVQds4UGORNXQZXs4dF9Pn-kWFujcWqDUpr8Ijs5bpweLytQ_IwnSwur8PZ3dXN5XgWGsGYDJFhxjiILAWGMWQyifNIa21EmnApUyO0YHEueEaXaaRRRizmII1I_JsyDXxIwt7XveK6W6p1Y0vdbFStrdpKK39CJSmPQHr-rOfXTf3SoWtVaZ3BotAV1p1TMuUCIGb_ghBHPIk8PiTQg6apnWsw_90BqPoOTPWBKeAKhPoOzPecbs27ZYnZn44-IQ-Me-DVFrj531FN5xdsOp5PLm7Bf-fPkC9bdqgH</recordid><startdate>199912</startdate><enddate>199912</enddate><creator>RYDER, JEFFREY W.</creator><creator>KAWANO, YUICHI</creator><creator>GALUSKA, DANA</creator><creator>FAHLMAN, ROGER</creator><creator>WALLBERG‐HENRIKSSON, HARRIET</creator><creator>CHARRON, MAUREEN J.</creator><creator>ZIERATH, JULEEN R.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>199912</creationdate><title>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</title><author>RYDER, JEFFREY W. ; KAWANO, YUICHI ; GALUSKA, DANA ; FAHLMAN, ROGER ; WALLBERG‐HENRIKSSON, HARRIET ; CHARRON, MAUREEN J. ; ZIERATH, JULEEN R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5226-e2ed2315d912e71d687f4aaac5983669c5a527f53d0b94ae6427316c58101da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Blood Glucose - metabolism</topic><topic>Dietary Carbohydrates</topic><topic>electrical stimulation</topic><topic>Fasting</topic><topic>Glucose - metabolism</topic><topic>glucose transport</topic><topic>glucose transporter</topic><topic>Glucose Transporter Type 1</topic><topic>Glucose Transporter Type 4</topic><topic>GLUT4 protein</topic><topic>glycogen</topic><topic>Glycogen - biosynthesis</topic><topic>Glycogen - metabolism</topic><topic>glycogen synthase</topic><topic>Glycogen Synthase - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Monosaccharide Transport Proteins - deficiency</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Proteins</topic><topic>Muscle, Skeletal - metabolism</topic><topic>physical exercise</topic><topic>Physical Exertion</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RYDER, JEFFREY W.</creatorcontrib><creatorcontrib>KAWANO, YUICHI</creatorcontrib><creatorcontrib>GALUSKA, DANA</creatorcontrib><creatorcontrib>FAHLMAN, ROGER</creatorcontrib><creatorcontrib>WALLBERG‐HENRIKSSON, HARRIET</creatorcontrib><creatorcontrib>CHARRON, MAUREEN J.</creatorcontrib><creatorcontrib>ZIERATH, JULEEN R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RYDER, JEFFREY W.</au><au>KAWANO, YUICHI</au><au>GALUSKA, DANA</au><au>FAHLMAN, ROGER</au><au>WALLBERG‐HENRIKSSON, HARRIET</au><au>CHARRON, MAUREEN J.</au><au>ZIERATH, JULEEN R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>1999-12</date><risdate>1999</risdate><volume>13</volume><issue>15</issue><spage>2246</spage><epage>2256</epage><pages>2246-2256</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4‐deficient and wild‐type mice were studied aftera3h swim exercise. In wild‐type mice, insulin and swimming each increased 2‐deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2‐deoxyglucose glucose uptake in muscle from GLUT4‐null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4‐null mice, with no effect noted in fasted GLUT4‐null mice. This exercise‐associated 2‐deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4‐null muscle was increased 1.6‐fold over basal levels after electrical stimulation. Contraction‐induced glucose transport activity was fourfold greater in wild‐type vs. GLUT4‐null muscle. Glycogen content in gastrocnemius muscle was similar between wild‐type and GLUT4‐null mice and was reduced ~50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild‐type, with no change in GLUT4‐null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4‐null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise‐induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild‐type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4‐null mice were totally restored after 24 h carbohydrate refeeding.—Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg‐Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice. FASEB J. 13, 2246–2256 (1999)</abstract><cop>United States</cop><pmid>10593872</pmid><doi>10.1096/fasebj.13.15.2246</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 1999-12, Vol.13 (15), p.2246-2256
issn 0892-6638
1530-6860
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_603416
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Animals
Biological Transport
Blood Glucose - metabolism
Dietary Carbohydrates
electrical stimulation
Fasting
Glucose - metabolism
glucose transport
glucose transporter
Glucose Transporter Type 1
Glucose Transporter Type 4
GLUT4 protein
glycogen
Glycogen - biosynthesis
Glycogen - metabolism
glycogen synthase
Glycogen Synthase - metabolism
Liver - metabolism
Male
Membrane Proteins - metabolism
metabolism
Mice
Mice, Inbred C57BL
Monosaccharide Transport Proteins - deficiency
Monosaccharide Transport Proteins - genetics
Monosaccharide Transport Proteins - metabolism
Muscle Contraction - physiology
Muscle Proteins
Muscle, Skeletal - metabolism
physical exercise
Physical Exertion
Space life sciences
title Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4‐deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Postexercise%20glucose%20uptake%20and%20glycogen%20synthesis%20in%20skeletal%20muscle%20from%20GLUT4%E2%80%90deficient%20mice&rft.jtitle=The%20FASEB%20journal&rft.au=RYDER,%20JEFFREY%20W.&rft.date=1999-12&rft.volume=13&rft.issue=15&rft.spage=2246&rft.epage=2256&rft.pages=2246-2256&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fasebj.13.15.2246&rft_dat=%3Cproquest_swepu%3E69351172%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17438469&rft_id=info:pmid/10593872&rfr_iscdi=true