Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates

This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 2002, Vol.357, p.133-144
Hauptverfasser: Masimirembwa, Collen M., Ridderström, Marianne, Zamora, Ismael, Andersson, Tommy B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 133
container_title Methods in Enzymology
container_volume 357
creator Masimirembwa, Collen M.
Ridderström, Marianne
Zamora, Ismael
Andersson, Tommy B.
description This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the selectivity. Generation of a three dimension-quantitative structure–activity relationship (QSAR) model for a diverse set of CYP2C9 inhibitors taking into account important parameters, such as mechanism of inhibition and stereochemistry, is described in the chapter. Basic validation of the QSAR models involves cross validation using the “leave one out” (L.O.O.) technique or different percentages of elements of the original training set and trying to predict their biological effect by the model generated with the remaining compounds. This method evaluates the predictive power of the model inside the set defined to build it but it could give an overly optimistic view of the performance of the model.
doi_str_mv 10.1016/S0076-6879(02)57673-4
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_592006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687902576734</els_id><sourcerecordid>72674726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2b7ac2104becec599c16d41b111b3730fd7481992ac8e3330487062213c00563</originalsourceid><addsrcrecordid>eNo9kctuFTEMhiMooofSRwDNCsFiinPPrBA6KhepUpHoAlZRknE5gTOTaZKh6tsz50K9sC3r8y_ZPyGvKFxQoOr9dwCtWmV09xbYO6mV5q14QlZUSt3qzpin5AVQRg1jCuQJWT3yp-S8lN-wBOWCG_WcnFImmOhArsiPdRp8HOP4q5k2Lg8upGmTMjZu7Jspp4pxbIbU43aH1LTMsI-hNuuf34SEJo6b6GNNuew3yuxLza5ieUme3bptwfNjPSM3ny5v1l_aq-vPX9cfr9rAtakt89oFRkF4DBhk1wWqekE9pdRzzeG218LQrmMuGOScgzAaFGOUBwCp-BlpD7LlHqfZ2ynHweUHm1y0x9GfpUMrOwaw498c-OW2uxlLtUMsAbdbN2Kai9VMabGkBXx9BGc_YP8o_P91C_DhAOBy3d-I2ZYQcQzLezKGavsULQW7M8_uzbM7MywwuzfPCv4PXjWIFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72674726</pqid></control><display><type>article</type><title>Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ScienceDirect eBooks</source><creator>Masimirembwa, Collen M. ; Ridderström, Marianne ; Zamora, Ismael ; Andersson, Tommy B.</creator><creatorcontrib>Masimirembwa, Collen M. ; Ridderström, Marianne ; Zamora, Ismael ; Andersson, Tommy B.</creatorcontrib><description>This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the selectivity. Generation of a three dimension-quantitative structure–activity relationship (QSAR) model for a diverse set of CYP2C9 inhibitors taking into account important parameters, such as mechanism of inhibition and stereochemistry, is described in the chapter. Basic validation of the QSAR models involves cross validation using the “leave one out” (L.O.O.) technique or different percentages of elements of the original training set and trying to predict their biological effect by the model generated with the remaining compounds. This method evaluates the predictive power of the model inside the set defined to build it but it could give an overly optimistic view of the performance of the model.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 0121822605</identifier><identifier>ISBN: 9780121822606</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(02)57673-4</identifier><identifier>PMID: 12424905</identifier><language>eng</language><publisher>United States: Elsevier Science &amp; Technology</publisher><subject>Animals ; Anti-Inflammatory Agents, Non-Steroidal - chemistry ; Anti-Inflammatory Agents, Non-Steroidal - metabolism ; Binding Sites ; Cytochrome P-450 Enzyme Inhibitors ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - metabolism ; Diclofenac - chemistry ; Diclofenac - metabolism ; Ligands ; Models, Molecular ; Multigene Family ; Protein Binding ; Protein Structure, Tertiary ; Quantitative Structure-Activity Relationship ; Rabbits ; Reproducibility of Results</subject><ispartof>Methods in Enzymology, 2002, Vol.357, p.133-144</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2b7ac2104becec599c16d41b111b3730fd7481992ac8e3330487062213c00563</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0076-6879(02)57673-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,777,781,790,882,3446,3537,4010,11269,27904,27905,27906,45791,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12424905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:18803017$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Masimirembwa, Collen M.</creatorcontrib><creatorcontrib>Ridderström, Marianne</creatorcontrib><creatorcontrib>Zamora, Ismael</creatorcontrib><creatorcontrib>Andersson, Tommy B.</creatorcontrib><title>Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the selectivity. Generation of a three dimension-quantitative structure–activity relationship (QSAR) model for a diverse set of CYP2C9 inhibitors taking into account important parameters, such as mechanism of inhibition and stereochemistry, is described in the chapter. Basic validation of the QSAR models involves cross validation using the “leave one out” (L.O.O.) technique or different percentages of elements of the original training set and trying to predict their biological effect by the model generated with the remaining compounds. This method evaluates the predictive power of the model inside the set defined to build it but it could give an overly optimistic view of the performance of the model.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - chemistry</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - metabolism</subject><subject>Binding Sites</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Diclofenac - chemistry</subject><subject>Diclofenac - metabolism</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Multigene Family</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Rabbits</subject><subject>Reproducibility of Results</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>0121822605</isbn><isbn>9780121822606</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kctuFTEMhiMooofSRwDNCsFiinPPrBA6KhepUpHoAlZRknE5gTOTaZKh6tsz50K9sC3r8y_ZPyGvKFxQoOr9dwCtWmV09xbYO6mV5q14QlZUSt3qzpin5AVQRg1jCuQJWT3yp-S8lN-wBOWCG_WcnFImmOhArsiPdRp8HOP4q5k2Lg8upGmTMjZu7Jspp4pxbIbU43aH1LTMsI-hNuuf34SEJo6b6GNNuew3yuxLza5ieUme3bptwfNjPSM3ny5v1l_aq-vPX9cfr9rAtakt89oFRkF4DBhk1wWqekE9pdRzzeG218LQrmMuGOScgzAaFGOUBwCp-BlpD7LlHqfZ2ynHweUHm1y0x9GfpUMrOwaw498c-OW2uxlLtUMsAbdbN2Kai9VMabGkBXx9BGc_YP8o_P91C_DhAOBy3d-I2ZYQcQzLezKGavsULQW7M8_uzbM7MywwuzfPCv4PXjWIFA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Masimirembwa, Collen M.</creator><creator>Ridderström, Marianne</creator><creator>Zamora, Ismael</creator><creator>Andersson, Tommy B.</creator><general>Elsevier Science &amp; Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>2002</creationdate><title>Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates</title><author>Masimirembwa, Collen M. ; Ridderström, Marianne ; Zamora, Ismael ; Andersson, Tommy B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2b7ac2104becec599c16d41b111b3730fd7481992ac8e3330487062213c00563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - chemistry</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - metabolism</topic><topic>Binding Sites</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Diclofenac - chemistry</topic><topic>Diclofenac - metabolism</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Multigene Family</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Rabbits</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masimirembwa, Collen M.</creatorcontrib><creatorcontrib>Ridderström, Marianne</creatorcontrib><creatorcontrib>Zamora, Ismael</creatorcontrib><creatorcontrib>Andersson, Tommy B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masimirembwa, Collen M.</au><au>Ridderström, Marianne</au><au>Zamora, Ismael</au><au>Andersson, Tommy B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2002</date><risdate>2002</risdate><volume>357</volume><spage>133</spage><epage>144</epage><pages>133-144</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>0121822605</isbn><isbn>9780121822606</isbn><abstract>This chapter discusses experience in homology modeling of cytochrome P450 (CYPs) 2C8, 2C9, 2C18, and CYP2C19 based on the rabbit CYP2C5 crystal structure. A substrate selectivity analysis for the CYP2C subfamily is also discussed in the chapter and highlights the amino acids responsible for the selectivity. Generation of a three dimension-quantitative structure–activity relationship (QSAR) model for a diverse set of CYP2C9 inhibitors taking into account important parameters, such as mechanism of inhibition and stereochemistry, is described in the chapter. Basic validation of the QSAR models involves cross validation using the “leave one out” (L.O.O.) technique or different percentages of elements of the original training set and trying to predict their biological effect by the model generated with the remaining compounds. This method evaluates the predictive power of the model inside the set defined to build it but it could give an overly optimistic view of the performance of the model.</abstract><cop>United States</cop><pub>Elsevier Science &amp; Technology</pub><pmid>12424905</pmid><doi>10.1016/S0076-6879(02)57673-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 2002, Vol.357, p.133-144
issn 0076-6879
1557-7988
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_592006
source MEDLINE; Elsevier ScienceDirect Journals; ScienceDirect eBooks
subjects Animals
Anti-Inflammatory Agents, Non-Steroidal - chemistry
Anti-Inflammatory Agents, Non-Steroidal - metabolism
Binding Sites
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - metabolism
Diclofenac - chemistry
Diclofenac - metabolism
Ligands
Models, Molecular
Multigene Family
Protein Binding
Protein Structure, Tertiary
Quantitative Structure-Activity Relationship
Rabbits
Reproducibility of Results
title Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20pharmacophore%20and%20protein%20modeling%20to%20predict%20CYP450%20inhibitors%20and%20substrates&rft.jtitle=Methods%20in%20Enzymology&rft.au=Masimirembwa,%20Collen%20M.&rft.date=2002&rft.volume=357&rft.spage=133&rft.epage=144&rft.pages=133-144&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=0121822605&rft.isbn_list=9780121822606&rft_id=info:doi/10.1016/S0076-6879(02)57673-4&rft_dat=%3Cproquest_swepu%3E72674726%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72674726&rft_id=info:pmid/12424905&rft_els_id=S0076687902576734&rfr_iscdi=true