The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus)
The present study describes the distribution and cellular morphology of catecholaminergic neurons in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these putatively dopaminergic neurons. The standard A1-A1...
Gespeichert in:
Veröffentlicht in: | Brain, behavior and evolution behavior and evolution, 2004-01, Vol.64 (1), p.42-60 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Brain, behavior and evolution |
container_volume | 64 |
creator | Manger, Paul R. Fuxe, Kjell Ridgway, Sam H. Siegel, Jerome M. |
description | The present study describes the distribution and cellular morphology of catecholaminergic neurons in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these putatively dopaminergic neurons. The standard A1-A17, C1-C3, nomenclature is used for expediency; however, the neuroanatomical names of the various nuclei have also been given. Dolphins exhibit certain tyrosine hydroxylase immunoreactive (TH-ir) catecholaminergic neuronal groups in the midbrain (A8, A9, A10) and diencephalon (A11, A12, A14), however, no neuronal clusters clearly corresponding to the A13 and A15 groups could be identified. The subdivisions of these neuronal groups are in general agreement with those of other mammals, but there is a high degree of species specificity. First, three TH-ir neuronal groups not identified in other species were found: in the ventral lateral peri-aqueductal gray matter, posterior dorsal hypothalamus, and rostral mesencephalic raphe. Second, the normal components of the substantia nigra (A9 or pars compacta, A9 lateral or pars lateralis, A9 ventral or pars reticulata) were extremely cell sparse, but there was a substantial expansion of the A9 medial and A10 lateral subdivisions forming an impressive ‘ventral wing’ in the posterior substantia nigra. The findings of this and previous studies suggest a distinct evolutionary trend occurring in the neuromodulatory systems in mammals. The results are discussed in relation to motor control, thermoregulation, unihemispheric sleep, and dolphin cognition. |
doi_str_mv | 10.1159/000077542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_586113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>653660681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-114293bbdb7a592f28995f126e524eea3b2365139962fee6a404b4a5b4b7fd5b3</originalsourceid><addsrcrecordid>eNp1kktv1DAUhSMEokNhwRoJRV0gugjE73iDxITykIrYDGvLSW4mbjN2sB0QP4b_iqfzKEXgje17vnN0bd0se4rKVwgx-bpMSwhG8b1sgShGhRSU3M8WqcyLSgpxkj0K4SpdKaboYXaCWMmQ5HyR_VoNkL8zIXrTzNE4m2vb5Z-dnwY3urVp9ZjXg_a6jeATZtqQuz6vdYQ2EXpjLPiE5TWMY8iNzeNNINgWpkGPh0DTNV4nNXm3wNLFOIJ1IbFunIakvFzNPhg3hTz62bY6zuH8cfag12OAJ_v9NPv6_mJVfywuv3z4VL-9LFrGcSxQerQkTdM1QjOJe1xJyXqEOTBMATRpMOEMESk57gG4piVtqGYNbUTfsYacZsUuN_yAaW7U5M1G-5_KaaP2pet0AsUqjhBJvPgvP3nX3ZoORiQZF5Il55udM8kb6Fqw0evxbsAdxZpBrd13VQlREroNeLEP8O7bDCGqjQlt-nxtwc1BoaokhMkqgWd_gVdu9jZ9o8IEI0pkyRN0voNa70Lw0B87QaXazpY6zlZin__Z-i25H6YEPNsB19qvwR-Bg_3sn-pyeXEDqKnryW97yeLa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232143906</pqid></control><display><type>article</type><title>The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus)</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Karger Journals</source><creator>Manger, Paul R. ; Fuxe, Kjell ; Ridgway, Sam H. ; Siegel, Jerome M.</creator><creatorcontrib>Manger, Paul R. ; Fuxe, Kjell ; Ridgway, Sam H. ; Siegel, Jerome M.</creatorcontrib><description>The present study describes the distribution and cellular morphology of catecholaminergic neurons in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these putatively dopaminergic neurons. The standard A1-A17, C1-C3, nomenclature is used for expediency; however, the neuroanatomical names of the various nuclei have also been given. Dolphins exhibit certain tyrosine hydroxylase immunoreactive (TH-ir) catecholaminergic neuronal groups in the midbrain (A8, A9, A10) and diencephalon (A11, A12, A14), however, no neuronal clusters clearly corresponding to the A13 and A15 groups could be identified. The subdivisions of these neuronal groups are in general agreement with those of other mammals, but there is a high degree of species specificity. First, three TH-ir neuronal groups not identified in other species were found: in the ventral lateral peri-aqueductal gray matter, posterior dorsal hypothalamus, and rostral mesencephalic raphe. Second, the normal components of the substantia nigra (A9 or pars compacta, A9 lateral or pars lateralis, A9 ventral or pars reticulata) were extremely cell sparse, but there was a substantial expansion of the A9 medial and A10 lateral subdivisions forming an impressive ‘ventral wing’ in the posterior substantia nigra. The findings of this and previous studies suggest a distinct evolutionary trend occurring in the neuromodulatory systems in mammals. The results are discussed in relation to motor control, thermoregulation, unihemispheric sleep, and dolphin cognition.</description><identifier>ISSN: 0006-8977</identifier><identifier>EISSN: 1421-9743</identifier><identifier>DOI: 10.1159/000077542</identifier><identifier>PMID: 15051966</identifier><identifier>CODEN: BRBEBE</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Aquatic mammals ; Catecholamines - metabolism ; Cetacea ; Diencephalon - cytology ; Diencephalon - metabolism ; Dolphins - anatomy & histology ; Dolphins - metabolism ; Female ; Marine ; Medicin och hälsovetenskap ; Mesencephalon - cytology ; Mesencephalon - metabolism ; Neurons - cytology ; Neurons - metabolism ; Original Paper ; Tissue Distribution ; Tursiops truncatus</subject><ispartof>Brain, behavior and evolution, 2004-01, Vol.64 (1), p.42-60</ispartof><rights>2004 S. Karger AG, Basel</rights><rights>Copyright 2004 S. Karger AG, Basel</rights><rights>Copyright National Library of Medicine - MEDLINE Abstracts 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-114293bbdb7a592f28995f126e524eea3b2365139962fee6a404b4a5b4b7fd5b3</citedby><cites>FETCH-LOGICAL-c562t-114293bbdb7a592f28995f126e524eea3b2365139962fee6a404b4a5b4b7fd5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,2429,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15051966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:1956795$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Manger, Paul R.</creatorcontrib><creatorcontrib>Fuxe, Kjell</creatorcontrib><creatorcontrib>Ridgway, Sam H.</creatorcontrib><creatorcontrib>Siegel, Jerome M.</creatorcontrib><title>The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus)</title><title>Brain, behavior and evolution</title><addtitle>Brain Behav Evol</addtitle><description>The present study describes the distribution and cellular morphology of catecholaminergic neurons in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these putatively dopaminergic neurons. The standard A1-A17, C1-C3, nomenclature is used for expediency; however, the neuroanatomical names of the various nuclei have also been given. Dolphins exhibit certain tyrosine hydroxylase immunoreactive (TH-ir) catecholaminergic neuronal groups in the midbrain (A8, A9, A10) and diencephalon (A11, A12, A14), however, no neuronal clusters clearly corresponding to the A13 and A15 groups could be identified. The subdivisions of these neuronal groups are in general agreement with those of other mammals, but there is a high degree of species specificity. First, three TH-ir neuronal groups not identified in other species were found: in the ventral lateral peri-aqueductal gray matter, posterior dorsal hypothalamus, and rostral mesencephalic raphe. Second, the normal components of the substantia nigra (A9 or pars compacta, A9 lateral or pars lateralis, A9 ventral or pars reticulata) were extremely cell sparse, but there was a substantial expansion of the A9 medial and A10 lateral subdivisions forming an impressive ‘ventral wing’ in the posterior substantia nigra. The findings of this and previous studies suggest a distinct evolutionary trend occurring in the neuromodulatory systems in mammals. The results are discussed in relation to motor control, thermoregulation, unihemispheric sleep, and dolphin cognition.</description><subject>Animals</subject><subject>Aquatic mammals</subject><subject>Catecholamines - metabolism</subject><subject>Cetacea</subject><subject>Diencephalon - cytology</subject><subject>Diencephalon - metabolism</subject><subject>Dolphins - anatomy & histology</subject><subject>Dolphins - metabolism</subject><subject>Female</subject><subject>Marine</subject><subject>Medicin och hälsovetenskap</subject><subject>Mesencephalon - cytology</subject><subject>Mesencephalon - metabolism</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Original Paper</subject><subject>Tissue Distribution</subject><subject>Tursiops truncatus</subject><issn>0006-8977</issn><issn>1421-9743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kktv1DAUhSMEokNhwRoJRV0gugjE73iDxITykIrYDGvLSW4mbjN2sB0QP4b_iqfzKEXgje17vnN0bd0se4rKVwgx-bpMSwhG8b1sgShGhRSU3M8WqcyLSgpxkj0K4SpdKaboYXaCWMmQ5HyR_VoNkL8zIXrTzNE4m2vb5Z-dnwY3urVp9ZjXg_a6jeATZtqQuz6vdYQ2EXpjLPiE5TWMY8iNzeNNINgWpkGPh0DTNV4nNXm3wNLFOIJ1IbFunIakvFzNPhg3hTz62bY6zuH8cfag12OAJ_v9NPv6_mJVfywuv3z4VL-9LFrGcSxQerQkTdM1QjOJe1xJyXqEOTBMATRpMOEMESk57gG4piVtqGYNbUTfsYacZsUuN_yAaW7U5M1G-5_KaaP2pet0AsUqjhBJvPgvP3nX3ZoORiQZF5Il55udM8kb6Fqw0evxbsAdxZpBrd13VQlREroNeLEP8O7bDCGqjQlt-nxtwc1BoaokhMkqgWd_gVdu9jZ9o8IEI0pkyRN0voNa70Lw0B87QaXazpY6zlZin__Z-i25H6YEPNsB19qvwR-Bg_3sn-pyeXEDqKnryW97yeLa</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Manger, Paul R.</creator><creator>Fuxe, Kjell</creator><creator>Ridgway, Sam H.</creator><creator>Siegel, Jerome M.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20040101</creationdate><title>The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus)</title><author>Manger, Paul R. ; Fuxe, Kjell ; Ridgway, Sam H. ; Siegel, Jerome M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-114293bbdb7a592f28995f126e524eea3b2365139962fee6a404b4a5b4b7fd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Aquatic mammals</topic><topic>Catecholamines - metabolism</topic><topic>Cetacea</topic><topic>Diencephalon - cytology</topic><topic>Diencephalon - metabolism</topic><topic>Dolphins - anatomy & histology</topic><topic>Dolphins - metabolism</topic><topic>Female</topic><topic>Marine</topic><topic>Medicin och hälsovetenskap</topic><topic>Mesencephalon - cytology</topic><topic>Mesencephalon - metabolism</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Original Paper</topic><topic>Tissue Distribution</topic><topic>Tursiops truncatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manger, Paul R.</creatorcontrib><creatorcontrib>Fuxe, Kjell</creatorcontrib><creatorcontrib>Ridgway, Sam H.</creatorcontrib><creatorcontrib>Siegel, Jerome M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Brain, behavior and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manger, Paul R.</au><au>Fuxe, Kjell</au><au>Ridgway, Sam H.</au><au>Siegel, Jerome M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus)</atitle><jtitle>Brain, behavior and evolution</jtitle><addtitle>Brain Behav Evol</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>64</volume><issue>1</issue><spage>42</spage><epage>60</epage><pages>42-60</pages><issn>0006-8977</issn><eissn>1421-9743</eissn><coden>BRBEBE</coden><abstract>The present study describes the distribution and cellular morphology of catecholaminergic neurons in the diencephalon and midbrain of the bottlenose dolphin (Tursiops truncatus). Tyrosine hydroxylase immunohistochemistry was used to visualize these putatively dopaminergic neurons. The standard A1-A17, C1-C3, nomenclature is used for expediency; however, the neuroanatomical names of the various nuclei have also been given. Dolphins exhibit certain tyrosine hydroxylase immunoreactive (TH-ir) catecholaminergic neuronal groups in the midbrain (A8, A9, A10) and diencephalon (A11, A12, A14), however, no neuronal clusters clearly corresponding to the A13 and A15 groups could be identified. The subdivisions of these neuronal groups are in general agreement with those of other mammals, but there is a high degree of species specificity. First, three TH-ir neuronal groups not identified in other species were found: in the ventral lateral peri-aqueductal gray matter, posterior dorsal hypothalamus, and rostral mesencephalic raphe. Second, the normal components of the substantia nigra (A9 or pars compacta, A9 lateral or pars lateralis, A9 ventral or pars reticulata) were extremely cell sparse, but there was a substantial expansion of the A9 medial and A10 lateral subdivisions forming an impressive ‘ventral wing’ in the posterior substantia nigra. The findings of this and previous studies suggest a distinct evolutionary trend occurring in the neuromodulatory systems in mammals. The results are discussed in relation to motor control, thermoregulation, unihemispheric sleep, and dolphin cognition.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>15051966</pmid><doi>10.1159/000077542</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8977 |
ispartof | Brain, behavior and evolution, 2004-01, Vol.64 (1), p.42-60 |
issn | 0006-8977 1421-9743 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_586113 |
source | MEDLINE; SWEPUB Freely available online; Karger Journals |
subjects | Animals Aquatic mammals Catecholamines - metabolism Cetacea Diencephalon - cytology Diencephalon - metabolism Dolphins - anatomy & histology Dolphins - metabolism Female Marine Medicin och hälsovetenskap Mesencephalon - cytology Mesencephalon - metabolism Neurons - cytology Neurons - metabolism Original Paper Tissue Distribution Tursiops truncatus |
title | The Distribution and Morphological Characteristics of Catecholaminergic Cells in the Diencephalon and Midbrain of the Bottlenose Dolphin (Tursiops truncatus) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20and%20Morphological%20Characteristics%20of%20Catecholaminergic%20Cells%20in%20the%20Diencephalon%20and%20Midbrain%20of%20the%20Bottlenose%20Dolphin%20(Tursiops%20truncatus)&rft.jtitle=Brain,%20behavior%20and%20evolution&rft.au=Manger,%20Paul%20R.&rft.date=2004-01-01&rft.volume=64&rft.issue=1&rft.spage=42&rft.epage=60&rft.pages=42-60&rft.issn=0006-8977&rft.eissn=1421-9743&rft.coden=BRBEBE&rft_id=info:doi/10.1159/000077542&rft_dat=%3Cproquest_swepu%3E653660681%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232143906&rft_id=info:pmid/15051966&rfr_iscdi=true |