Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation

The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2005-04, Vol.14 (7), p.953-965
Hauptverfasser: Pugacheva, Elena M., Tiwari, Vijay Kumar, Abdullaev, Ziedulla, Vostrov, Alexander A., Flanagan, Patrick T., Quitschke, Wolfgang W., Loukinov, Dmitri I., Ohlsson, Rolf, Lobanenkov, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 7
container_start_page 953
container_title Human molecular genetics
container_volume 14
creator Pugacheva, Elena M.
Tiwari, Vijay Kumar
Abdullaev, Ziedulla
Vostrov, Alexander A.
Flanagan, Patrick T.
Quitschke, Wolfgang W.
Loukinov, Dmitri I.
Ohlsson, Rolf
Lobanenkov, Victor V.
description The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.
doi_str_mv 10.1093/hmg/ddi089
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_581921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821711341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</originalsourceid><addsrcrecordid>eNqFkl1v0zAUhiMEYmVwww9AFhJcgMLs2I7ty6kjbNIkLlqg4sZynNPWWxIXO9ngh_B_cdeySkgTV_563vd8-GTZS4I_EKzoybpbnTSNw1I9yiaElTgvsKSPswlWJctLhcuj7FmMVxiTklHxNDsiXFBCiJpkvyvTudaZFlkTISK_RBvv-gF142AG5_uIXI-GNaDFxWyONsF3foCAAtxAEhlkfQjQ3qGohuEWoEfT-bRCtesb16-Q6Zskgxy6zeBuANm1d3YXaZEOW8PoO0hhjE3AndPz7MnStBFe7Nfj7Ev1cT49zy8_f7qYnl7mtqRiyLmhqSBOSqoIbSxYKZhpGo5lbUXNLJfMYCMkrfGyKIWoacEkCIwlYIsFp8dZvvONt7AZa70JrjPhl_bG6f3VddqB5pKogiRePcin1jQH0V8hST-kMMYiad8_qD1zX0-1Dys9jlpRxWii3-7oZPtjhDjozkULbWt68GPUZcq-YEXxX5AIibng21pf_wNe-TH0qb26IKSQXGGWoHc7yAYfY4DlfZoE6-2w6TRsejdsCX61dxzrDpoDup-uBLzZAyZa0y6D6a2LB64UpCQFO3yDiwP8vH834TrVSQXX54vvejarSHWmlP5G_wCGNe6S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211285904</pqid></control><display><type>article</type><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</creator><creatorcontrib>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</creatorcontrib><description>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi089</identifier><identifier>PMID: 15731119</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Alleles ; Animals ; Base Sequence ; Biological and medical sciences ; CCCTC-Binding Factor ; Cell Nucleus - metabolism ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Chromosomes, Human, X ; Deoxyribonuclease I - metabolism ; DNA Methylation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dosage Compensation, Genetic ; Family Health ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Heterozygote ; Humans ; Immunoprecipitation ; Male ; Medicin och hälsovetenskap ; Mice ; Models, Genetic ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutation ; Plasmids - metabolism ; Point Mutation ; Promoter Regions, Genetic ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA, Long Noncoding ; RNA, Untranslated - genetics ; Sequence Homology, Nucleic Acid ; Sex Factors ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing ; Zinc Fingers</subject><ispartof>Human molecular genetics, 2005-04, Vol.14 (7), p.953-965</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</citedby><cites>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16716124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15731119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-93943$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:110990007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pugacheva, Elena M.</creatorcontrib><creatorcontrib>Tiwari, Vijay Kumar</creatorcontrib><creatorcontrib>Abdullaev, Ziedulla</creatorcontrib><creatorcontrib>Vostrov, Alexander A.</creatorcontrib><creatorcontrib>Flanagan, Patrick T.</creatorcontrib><creatorcontrib>Quitschke, Wolfgang W.</creatorcontrib><creatorcontrib>Loukinov, Dmitri I.</creatorcontrib><creatorcontrib>Ohlsson, Rolf</creatorcontrib><creatorcontrib>Lobanenkov, Victor V.</creatorcontrib><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</description><subject>Alleles</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomes, Human, X</subject><subject>Deoxyribonuclease I - metabolism</subject><subject>DNA Methylation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dosage Compensation, Genetic</subject><subject>Family Health</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plasmids - metabolism</subject><subject>Point Mutation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Untranslated - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sex Factors</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>Zinc Fingers</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1v0zAUhiMEYmVwww9AFhJcgMLs2I7ty6kjbNIkLlqg4sZynNPWWxIXO9ngh_B_cdeySkgTV_563vd8-GTZS4I_EKzoybpbnTSNw1I9yiaElTgvsKSPswlWJctLhcuj7FmMVxiTklHxNDsiXFBCiJpkvyvTudaZFlkTISK_RBvv-gF142AG5_uIXI-GNaDFxWyONsF3foCAAtxAEhlkfQjQ3qGohuEWoEfT-bRCtesb16-Q6Zskgxy6zeBuANm1d3YXaZEOW8PoO0hhjE3AndPz7MnStBFe7Nfj7Ev1cT49zy8_f7qYnl7mtqRiyLmhqSBOSqoIbSxYKZhpGo5lbUXNLJfMYCMkrfGyKIWoacEkCIwlYIsFp8dZvvONt7AZa70JrjPhl_bG6f3VddqB5pKogiRePcin1jQH0V8hST-kMMYiad8_qD1zX0-1Dys9jlpRxWii3-7oZPtjhDjozkULbWt68GPUZcq-YEXxX5AIibng21pf_wNe-TH0qb26IKSQXGGWoHc7yAYfY4DlfZoE6-2w6TRsejdsCX61dxzrDpoDup-uBLzZAyZa0y6D6a2LB64UpCQFO3yDiwP8vH834TrVSQXX54vvejarSHWmlP5G_wCGNe6S</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Pugacheva, Elena M.</creator><creator>Tiwari, Vijay Kumar</creator><creator>Abdullaev, Ziedulla</creator><creator>Vostrov, Alexander A.</creator><creator>Flanagan, Patrick T.</creator><creator>Quitschke, Wolfgang W.</creator><creator>Loukinov, Dmitri I.</creator><creator>Ohlsson, Rolf</creator><creator>Lobanenkov, Victor V.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20050401</creationdate><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><author>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomes, Human, X</topic><topic>Deoxyribonuclease I - metabolism</topic><topic>DNA Methylation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dosage Compensation, Genetic</topic><topic>Family Health</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plasmids - metabolism</topic><topic>Point Mutation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Untranslated - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sex Factors</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugacheva, Elena M.</creatorcontrib><creatorcontrib>Tiwari, Vijay Kumar</creatorcontrib><creatorcontrib>Abdullaev, Ziedulla</creatorcontrib><creatorcontrib>Vostrov, Alexander A.</creatorcontrib><creatorcontrib>Flanagan, Patrick T.</creatorcontrib><creatorcontrib>Quitschke, Wolfgang W.</creatorcontrib><creatorcontrib>Loukinov, Dmitri I.</creatorcontrib><creatorcontrib>Ohlsson, Rolf</creatorcontrib><creatorcontrib>Lobanenkov, Victor V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugacheva, Elena M.</au><au>Tiwari, Vijay Kumar</au><au>Abdullaev, Ziedulla</au><au>Vostrov, Alexander A.</au><au>Flanagan, Patrick T.</au><au>Quitschke, Wolfgang W.</au><au>Loukinov, Dmitri I.</au><au>Ohlsson, Rolf</au><au>Lobanenkov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>7</issue><spage>953</spage><epage>965</epage><pages>953-965</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15731119</pmid><doi>10.1093/hmg/ddi089</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2005-04, Vol.14 (7), p.953-965
issn 0964-6906
1460-2083
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_581921
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Alleles
Animals
Base Sequence
Biological and medical sciences
CCCTC-Binding Factor
Cell Nucleus - metabolism
Chromatin - metabolism
Chromatin Immunoprecipitation
Chromosomes, Human, X
Deoxyribonuclease I - metabolism
DNA Methylation
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Dosage Compensation, Genetic
Family Health
Female
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Heterozygote
Humans
Immunoprecipitation
Male
Medicin och hälsovetenskap
Mice
Models, Genetic
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutation
Plasmids - metabolism
Point Mutation
Promoter Regions, Genetic
Protein Binding
Protein Biosynthesis
Protein Conformation
Protein Structure, Tertiary
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA, Long Noncoding
RNA, Untranslated - genetics
Sequence Homology, Nucleic Acid
Sex Factors
Transcription, Genetic
Transcription. Transcription factor. Splicing. Rna processing
Zinc Fingers
title Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Familial%20cases%20of%20point%20mutations%20in%20the%20XIST%20promoter%20reveal%20a%20correlation%20between%20CTCF%20binding%20and%20pre-emptive%20choices%20of%20X%20chromosome%20inactivation&rft.jtitle=Human%20molecular%20genetics&rft.au=Pugacheva,%20Elena%20M.&rft.date=2005-04-01&rft.volume=14&rft.issue=7&rft.spage=953&rft.epage=965&rft.pages=953-965&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi089&rft_dat=%3Cproquest_swepu%3E821711341%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211285904&rft_id=info:pmid/15731119&rfr_iscdi=true