Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation
The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of hete...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2005-04, Vol.14 (7), p.953-965 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 7 |
container_start_page | 953 |
container_title | Human molecular genetics |
container_volume | 14 |
creator | Pugacheva, Elena M. Tiwari, Vijay Kumar Abdullaev, Ziedulla Vostrov, Alexander A. Flanagan, Patrick T. Quitschke, Wolfgang W. Loukinov, Dmitri I. Ohlsson, Rolf Lobanenkov, Victor V. |
description | The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex. |
doi_str_mv | 10.1093/hmg/ddi089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_581921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821711341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</originalsourceid><addsrcrecordid>eNqFkl1v0zAUhiMEYmVwww9AFhJcgMLs2I7ty6kjbNIkLlqg4sZynNPWWxIXO9ngh_B_cdeySkgTV_563vd8-GTZS4I_EKzoybpbnTSNw1I9yiaElTgvsKSPswlWJctLhcuj7FmMVxiTklHxNDsiXFBCiJpkvyvTudaZFlkTISK_RBvv-gF142AG5_uIXI-GNaDFxWyONsF3foCAAtxAEhlkfQjQ3qGohuEWoEfT-bRCtesb16-Q6Zskgxy6zeBuANm1d3YXaZEOW8PoO0hhjE3AndPz7MnStBFe7Nfj7Ev1cT49zy8_f7qYnl7mtqRiyLmhqSBOSqoIbSxYKZhpGo5lbUXNLJfMYCMkrfGyKIWoacEkCIwlYIsFp8dZvvONt7AZa70JrjPhl_bG6f3VddqB5pKogiRePcin1jQH0V8hST-kMMYiad8_qD1zX0-1Dys9jlpRxWii3-7oZPtjhDjozkULbWt68GPUZcq-YEXxX5AIibng21pf_wNe-TH0qb26IKSQXGGWoHc7yAYfY4DlfZoE6-2w6TRsejdsCX61dxzrDpoDup-uBLzZAyZa0y6D6a2LB64UpCQFO3yDiwP8vH834TrVSQXX54vvejarSHWmlP5G_wCGNe6S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211285904</pqid></control><display><type>article</type><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</creator><creatorcontrib>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</creatorcontrib><description>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi089</identifier><identifier>PMID: 15731119</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Alleles ; Animals ; Base Sequence ; Biological and medical sciences ; CCCTC-Binding Factor ; Cell Nucleus - metabolism ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Chromosomes, Human, X ; Deoxyribonuclease I - metabolism ; DNA Methylation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dosage Compensation, Genetic ; Family Health ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Heterozygote ; Humans ; Immunoprecipitation ; Male ; Medicin och hälsovetenskap ; Mice ; Models, Genetic ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutation ; Plasmids - metabolism ; Point Mutation ; Promoter Regions, Genetic ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA, Long Noncoding ; RNA, Untranslated - genetics ; Sequence Homology, Nucleic Acid ; Sex Factors ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing ; Zinc Fingers</subject><ispartof>Human molecular genetics, 2005-04, Vol.14 (7), p.953-965</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</citedby><cites>FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16716124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15731119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-93943$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:110990007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pugacheva, Elena M.</creatorcontrib><creatorcontrib>Tiwari, Vijay Kumar</creatorcontrib><creatorcontrib>Abdullaev, Ziedulla</creatorcontrib><creatorcontrib>Vostrov, Alexander A.</creatorcontrib><creatorcontrib>Flanagan, Patrick T.</creatorcontrib><creatorcontrib>Quitschke, Wolfgang W.</creatorcontrib><creatorcontrib>Loukinov, Dmitri I.</creatorcontrib><creatorcontrib>Ohlsson, Rolf</creatorcontrib><creatorcontrib>Lobanenkov, Victor V.</creatorcontrib><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</description><subject>Alleles</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomes, Human, X</subject><subject>Deoxyribonuclease I - metabolism</subject><subject>DNA Methylation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dosage Compensation, Genetic</subject><subject>Family Health</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Plasmids - metabolism</subject><subject>Point Mutation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA, Long Noncoding</subject><subject>RNA, Untranslated - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sex Factors</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>Zinc Fingers</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1v0zAUhiMEYmVwww9AFhJcgMLs2I7ty6kjbNIkLlqg4sZynNPWWxIXO9ngh_B_cdeySkgTV_563vd8-GTZS4I_EKzoybpbnTSNw1I9yiaElTgvsKSPswlWJctLhcuj7FmMVxiTklHxNDsiXFBCiJpkvyvTudaZFlkTISK_RBvv-gF142AG5_uIXI-GNaDFxWyONsF3foCAAtxAEhlkfQjQ3qGohuEWoEfT-bRCtesb16-Q6Zskgxy6zeBuANm1d3YXaZEOW8PoO0hhjE3AndPz7MnStBFe7Nfj7Ev1cT49zy8_f7qYnl7mtqRiyLmhqSBOSqoIbSxYKZhpGo5lbUXNLJfMYCMkrfGyKIWoacEkCIwlYIsFp8dZvvONt7AZa70JrjPhl_bG6f3VddqB5pKogiRePcin1jQH0V8hST-kMMYiad8_qD1zX0-1Dys9jlpRxWii3-7oZPtjhDjozkULbWt68GPUZcq-YEXxX5AIibng21pf_wNe-TH0qb26IKSQXGGWoHc7yAYfY4DlfZoE6-2w6TRsejdsCX61dxzrDpoDup-uBLzZAyZa0y6D6a2LB64UpCQFO3yDiwP8vH834TrVSQXX54vvejarSHWmlP5G_wCGNe6S</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Pugacheva, Elena M.</creator><creator>Tiwari, Vijay Kumar</creator><creator>Abdullaev, Ziedulla</creator><creator>Vostrov, Alexander A.</creator><creator>Flanagan, Patrick T.</creator><creator>Quitschke, Wolfgang W.</creator><creator>Loukinov, Dmitri I.</creator><creator>Ohlsson, Rolf</creator><creator>Lobanenkov, Victor V.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20050401</creationdate><title>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</title><author>Pugacheva, Elena M. ; Tiwari, Vijay Kumar ; Abdullaev, Ziedulla ; Vostrov, Alexander A. ; Flanagan, Patrick T. ; Quitschke, Wolfgang W. ; Loukinov, Dmitri I. ; Ohlsson, Rolf ; Lobanenkov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-5a36435163913dcec874add508bc7b4c584a0a783b0f2677b3248e7008e0c0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomes, Human, X</topic><topic>Deoxyribonuclease I - metabolism</topic><topic>DNA Methylation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dosage Compensation, Genetic</topic><topic>Family Health</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Plasmids - metabolism</topic><topic>Point Mutation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA, Long Noncoding</topic><topic>RNA, Untranslated - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sex Factors</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugacheva, Elena M.</creatorcontrib><creatorcontrib>Tiwari, Vijay Kumar</creatorcontrib><creatorcontrib>Abdullaev, Ziedulla</creatorcontrib><creatorcontrib>Vostrov, Alexander A.</creatorcontrib><creatorcontrib>Flanagan, Patrick T.</creatorcontrib><creatorcontrib>Quitschke, Wolfgang W.</creatorcontrib><creatorcontrib>Loukinov, Dmitri I.</creatorcontrib><creatorcontrib>Ohlsson, Rolf</creatorcontrib><creatorcontrib>Lobanenkov, Victor V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugacheva, Elena M.</au><au>Tiwari, Vijay Kumar</au><au>Abdullaev, Ziedulla</au><au>Vostrov, Alexander A.</au><au>Flanagan, Patrick T.</au><au>Quitschke, Wolfgang W.</au><au>Loukinov, Dmitri I.</au><au>Ohlsson, Rolf</au><au>Lobanenkov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>7</issue><spage>953</spage><epage>965</epage><pages>953-965</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(−43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(−43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the −43 position within the DNase I footprint of CTCF. While the C(−43)A mutation abrogates CTCF binding, the C(−43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two −43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF–XIST promoter complex.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15731119</pmid><doi>10.1093/hmg/ddi089</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2005-04, Vol.14 (7), p.953-965 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_581921 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Alleles Animals Base Sequence Biological and medical sciences CCCTC-Binding Factor Cell Nucleus - metabolism Chromatin - metabolism Chromatin Immunoprecipitation Chromosomes, Human, X Deoxyribonuclease I - metabolism DNA Methylation DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Dosage Compensation, Genetic Family Health Female Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Heterozygote Humans Immunoprecipitation Male Medicin och hälsovetenskap Mice Models, Genetic Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutation Plasmids - metabolism Point Mutation Promoter Regions, Genetic Protein Binding Protein Biosynthesis Protein Conformation Protein Structure, Tertiary Repressor Proteins - genetics Repressor Proteins - metabolism RNA, Long Noncoding RNA, Untranslated - genetics Sequence Homology, Nucleic Acid Sex Factors Transcription, Genetic Transcription. Transcription factor. Splicing. Rna processing Zinc Fingers |
title | Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Familial%20cases%20of%20point%20mutations%20in%20the%20XIST%20promoter%20reveal%20a%20correlation%20between%20CTCF%20binding%20and%20pre-emptive%20choices%20of%20X%20chromosome%20inactivation&rft.jtitle=Human%20molecular%20genetics&rft.au=Pugacheva,%20Elena%20M.&rft.date=2005-04-01&rft.volume=14&rft.issue=7&rft.spage=953&rft.epage=965&rft.pages=953-965&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi089&rft_dat=%3Cproquest_swepu%3E821711341%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211285904&rft_id=info:pmid/15731119&rfr_iscdi=true |