Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology

Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF BIOLOGICAL CHEMISTRY 2006-12, Vol.281 (49), p.37972-37979
Hauptverfasser: Duvezin-Caubet, Stéphane, Jagasia, Ravi, Wagener, Johannes, Hofmann, Sabine, Trifunovic, Aleksandra, Hansson, Anna, Chomyn, Anne, Bauer, Matthias F., Attardi, Giuseppe, Larsson, Nils-Göran, Neupert, Walter, Reichert, Andreas S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37979
container_issue 49
container_start_page 37972
container_title JOURNAL OF BIOLOGICAL CHEMISTRY
container_volume 281
creator Duvezin-Caubet, Stéphane
Jagasia, Ravi
Wagener, Johannes
Hofmann, Sabine
Trifunovic, Aleksandra
Hansson, Anna
Chomyn, Anne
Bauer, Matthias F.
Attardi, Giuseppe
Larsson, Nils-Göran
Neupert, Walter
Reichert, Andreas S.
description Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.
doi_str_mv 10.1074/jbc.M606059200
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_573662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820719733</els_id><sourcerecordid>19505373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYsvClSPkgLilzMSxnRxXy6fUaleClbhZjj1pvZvGXTtl1X-PqxQqIa3wxWPreUejebLsNcIcQVYfblszXwoQwJsS4Ek2Q6hZwTj-fJrNAEosmpLXZ9mLGG8hnarB59kZSgAGFcwydx38SL7fj87kqTYUoxtWue_yq-sLzBduuIv50o3erP1gg9N9_nEfu91gRueHfPT5RT9S0IdXzN3wD7v0Ybv2vV_tX2bPOt1HenW8z7Obz59-XH4tFldfvl1eLAojBB8LK0qpUWIjLfJWCOItkAUkIWpdM13b0mqOHTEhtaxk4ixrAFpLpWg1sfOsmPrGB9ruWrUNbqPDXnnt1PHrLlWkuGRClIlvHuW3wdtT6E8QseQAQkDKvp-yCbzfURzVxkVDfa8H8ruoRF1i1VTyvyA2HDiTLIHzCTTBxxio-zsPgjoYV8m4OhlPgTfHzrt2Q_aEHxUn4N0ErN1q_eACqdYlQbRRZY2qahRLOzys4e2EddorvQouqpvvJSADRKx5IxJRTwQle78cBRWNo8GQTU3NqKx3jw35G9W-0So</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19505373</pqid></control><display><type>article</type><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</creator><creatorcontrib>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</creatorcontrib><description>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M606059200</identifier><identifier>PMID: 17003040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Case-Control Studies ; Cell Line ; DNA, Mitochondrial - genetics ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Energy Metabolism ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; HeLa Cells ; High Mobility Group Proteins - deficiency ; High Mobility Group Proteins - genetics ; Humans ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Medicin och hälsovetenskap ; Mice ; Mice, Knockout ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - pathology ; Mitochondrial Diseases - enzymology ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - pathology ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Mutation ; Protein Processing, Post-Translational</subject><ispartof>JOURNAL OF BIOLOGICAL CHEMISTRY, 2006-12, Vol.281 (49), p.37972-37979</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</citedby><cites>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17003040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:112500660$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Duvezin-Caubet, Stéphane</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Wagener, Johannes</creatorcontrib><creatorcontrib>Hofmann, Sabine</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hansson, Anna</creatorcontrib><creatorcontrib>Chomyn, Anne</creatorcontrib><creatorcontrib>Bauer, Matthias F.</creatorcontrib><creatorcontrib>Attardi, Giuseppe</creatorcontrib><creatorcontrib>Larsson, Nils-Göran</creatorcontrib><creatorcontrib>Neupert, Walter</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><title>JOURNAL OF BIOLOGICAL CHEMISTRY</title><addtitle>J Biol Chem</addtitle><description>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</description><subject>Animals</subject><subject>Case-Control Studies</subject><subject>Cell Line</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Energy Metabolism</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>HeLa Cells</subject><subject>High Mobility Group Proteins - deficiency</subject><subject>High Mobility Group Proteins - genetics</subject><subject>Humans</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases - enzymology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - pathology</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Mutation</subject><subject>Protein Processing, Post-Translational</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkU2P0zAQhiMEYsvClSPkgLilzMSxnRxXy6fUaleClbhZjj1pvZvGXTtl1X-PqxQqIa3wxWPreUejebLsNcIcQVYfblszXwoQwJsS4Ek2Q6hZwTj-fJrNAEosmpLXZ9mLGG8hnarB59kZSgAGFcwydx38SL7fj87kqTYUoxtWue_yq-sLzBduuIv50o3erP1gg9N9_nEfu91gRueHfPT5RT9S0IdXzN3wD7v0Ybv2vV_tX2bPOt1HenW8z7Obz59-XH4tFldfvl1eLAojBB8LK0qpUWIjLfJWCOItkAUkIWpdM13b0mqOHTEhtaxk4ixrAFpLpWg1sfOsmPrGB9ruWrUNbqPDXnnt1PHrLlWkuGRClIlvHuW3wdtT6E8QseQAQkDKvp-yCbzfURzVxkVDfa8H8ruoRF1i1VTyvyA2HDiTLIHzCTTBxxio-zsPgjoYV8m4OhlPgTfHzrt2Q_aEHxUn4N0ErN1q_eACqdYlQbRRZY2qahRLOzys4e2EddorvQouqpvvJSADRKx5IxJRTwQle78cBRWNo8GQTU3NqKx3jw35G9W-0So</recordid><startdate>20061208</startdate><enddate>20061208</enddate><creator>Duvezin-Caubet, Stéphane</creator><creator>Jagasia, Ravi</creator><creator>Wagener, Johannes</creator><creator>Hofmann, Sabine</creator><creator>Trifunovic, Aleksandra</creator><creator>Hansson, Anna</creator><creator>Chomyn, Anne</creator><creator>Bauer, Matthias F.</creator><creator>Attardi, Giuseppe</creator><creator>Larsson, Nils-Göran</creator><creator>Neupert, Walter</creator><creator>Reichert, Andreas S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20061208</creationdate><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><author>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Case-Control Studies</topic><topic>Cell Line</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Energy Metabolism</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>HeLa Cells</topic><topic>High Mobility Group Proteins - deficiency</topic><topic>High Mobility Group Proteins - genetics</topic><topic>Humans</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases - enzymology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - pathology</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Mutation</topic><topic>Protein Processing, Post-Translational</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duvezin-Caubet, Stéphane</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Wagener, Johannes</creatorcontrib><creatorcontrib>Hofmann, Sabine</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hansson, Anna</creatorcontrib><creatorcontrib>Chomyn, Anne</creatorcontrib><creatorcontrib>Bauer, Matthias F.</creatorcontrib><creatorcontrib>Attardi, Giuseppe</creatorcontrib><creatorcontrib>Larsson, Nils-Göran</creatorcontrib><creatorcontrib>Neupert, Walter</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duvezin-Caubet, Stéphane</au><au>Jagasia, Ravi</au><au>Wagener, Johannes</au><au>Hofmann, Sabine</au><au>Trifunovic, Aleksandra</au><au>Hansson, Anna</au><au>Chomyn, Anne</au><au>Bauer, Matthias F.</au><au>Attardi, Giuseppe</au><au>Larsson, Nils-Göran</au><au>Neupert, Walter</au><au>Reichert, Andreas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</atitle><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle><addtitle>J Biol Chem</addtitle><date>2006-12-08</date><risdate>2006</risdate><volume>281</volume><issue>49</issue><spage>37972</spage><epage>37979</epage><pages>37972-37979</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17003040</pmid><doi>10.1074/jbc.M606059200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof JOURNAL OF BIOLOGICAL CHEMISTRY, 2006-12, Vol.281 (49), p.37972-37979
issn 0021-9258
1083-351X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_573662
source MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Case-Control Studies
Cell Line
DNA, Mitochondrial - genetics
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
Energy Metabolism
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
HeLa Cells
High Mobility Group Proteins - deficiency
High Mobility Group Proteins - genetics
Humans
Isoenzymes - genetics
Isoenzymes - metabolism
Medicin och hälsovetenskap
Mice
Mice, Knockout
Mitochondria - enzymology
Mitochondria - genetics
Mitochondria - pathology
Mitochondrial Diseases - enzymology
Mitochondrial Diseases - genetics
Mitochondrial Diseases - pathology
Muscle, Skeletal - enzymology
Muscle, Skeletal - pathology
Mutation
Protein Processing, Post-Translational
title Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Processing%20of%20OPA1%20Links%20Mitochondrial%20Dysfunction%20to%20Alterations%20in%20Mitochondrial%20Morphology&rft.jtitle=JOURNAL%20OF%20BIOLOGICAL%20CHEMISTRY&rft.au=Duvezin-Caubet,%20St%C3%A9phane&rft.date=2006-12-08&rft.volume=281&rft.issue=49&rft.spage=37972&rft.epage=37979&rft.pages=37972-37979&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M606059200&rft_dat=%3Cproquest_swepu%3E19505373%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19505373&rft_id=info:pmid/17003040&rft_els_id=S0021925820719733&rfr_iscdi=true