Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology
Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF BIOLOGICAL CHEMISTRY 2006-12, Vol.281 (49), p.37972-37979 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37979 |
---|---|
container_issue | 49 |
container_start_page | 37972 |
container_title | JOURNAL OF BIOLOGICAL CHEMISTRY |
container_volume | 281 |
creator | Duvezin-Caubet, Stéphane Jagasia, Ravi Wagener, Johannes Hofmann, Sabine Trifunovic, Aleksandra Hansson, Anna Chomyn, Anne Bauer, Matthias F. Attardi, Giuseppe Larsson, Nils-Göran Neupert, Walter Reichert, Andreas S. |
description | Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network. |
doi_str_mv | 10.1074/jbc.M606059200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_573662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820719733</els_id><sourcerecordid>19505373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYsvClSPkgLilzMSxnRxXy6fUaleClbhZjj1pvZvGXTtl1X-PqxQqIa3wxWPreUejebLsNcIcQVYfblszXwoQwJsS4Ek2Q6hZwTj-fJrNAEosmpLXZ9mLGG8hnarB59kZSgAGFcwydx38SL7fj87kqTYUoxtWue_yq-sLzBduuIv50o3erP1gg9N9_nEfu91gRueHfPT5RT9S0IdXzN3wD7v0Ybv2vV_tX2bPOt1HenW8z7Obz59-XH4tFldfvl1eLAojBB8LK0qpUWIjLfJWCOItkAUkIWpdM13b0mqOHTEhtaxk4ixrAFpLpWg1sfOsmPrGB9ruWrUNbqPDXnnt1PHrLlWkuGRClIlvHuW3wdtT6E8QseQAQkDKvp-yCbzfURzVxkVDfa8H8ruoRF1i1VTyvyA2HDiTLIHzCTTBxxio-zsPgjoYV8m4OhlPgTfHzrt2Q_aEHxUn4N0ErN1q_eACqdYlQbRRZY2qahRLOzys4e2EddorvQouqpvvJSADRKx5IxJRTwQle78cBRWNo8GQTU3NqKx3jw35G9W-0So</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19505373</pqid></control><display><type>article</type><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</creator><creatorcontrib>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</creatorcontrib><description>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M606059200</identifier><identifier>PMID: 17003040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Case-Control Studies ; Cell Line ; DNA, Mitochondrial - genetics ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Energy Metabolism ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; HeLa Cells ; High Mobility Group Proteins - deficiency ; High Mobility Group Proteins - genetics ; Humans ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Medicin och hälsovetenskap ; Mice ; Mice, Knockout ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - pathology ; Mitochondrial Diseases - enzymology ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - pathology ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - pathology ; Mutation ; Protein Processing, Post-Translational</subject><ispartof>JOURNAL OF BIOLOGICAL CHEMISTRY, 2006-12, Vol.281 (49), p.37972-37979</ispartof><rights>2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</citedby><cites>FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17003040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:112500660$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Duvezin-Caubet, Stéphane</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Wagener, Johannes</creatorcontrib><creatorcontrib>Hofmann, Sabine</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hansson, Anna</creatorcontrib><creatorcontrib>Chomyn, Anne</creatorcontrib><creatorcontrib>Bauer, Matthias F.</creatorcontrib><creatorcontrib>Attardi, Giuseppe</creatorcontrib><creatorcontrib>Larsson, Nils-Göran</creatorcontrib><creatorcontrib>Neupert, Walter</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><title>JOURNAL OF BIOLOGICAL CHEMISTRY</title><addtitle>J Biol Chem</addtitle><description>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</description><subject>Animals</subject><subject>Case-Control Studies</subject><subject>Cell Line</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Energy Metabolism</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>HeLa Cells</subject><subject>High Mobility Group Proteins - deficiency</subject><subject>High Mobility Group Proteins - genetics</subject><subject>Humans</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases - enzymology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - pathology</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Mutation</subject><subject>Protein Processing, Post-Translational</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkU2P0zAQhiMEYsvClSPkgLilzMSxnRxXy6fUaleClbhZjj1pvZvGXTtl1X-PqxQqIa3wxWPreUejebLsNcIcQVYfblszXwoQwJsS4Ek2Q6hZwTj-fJrNAEosmpLXZ9mLGG8hnarB59kZSgAGFcwydx38SL7fj87kqTYUoxtWue_yq-sLzBduuIv50o3erP1gg9N9_nEfu91gRueHfPT5RT9S0IdXzN3wD7v0Ybv2vV_tX2bPOt1HenW8z7Obz59-XH4tFldfvl1eLAojBB8LK0qpUWIjLfJWCOItkAUkIWpdM13b0mqOHTEhtaxk4ixrAFpLpWg1sfOsmPrGB9ruWrUNbqPDXnnt1PHrLlWkuGRClIlvHuW3wdtT6E8QseQAQkDKvp-yCbzfURzVxkVDfa8H8ruoRF1i1VTyvyA2HDiTLIHzCTTBxxio-zsPgjoYV8m4OhlPgTfHzrt2Q_aEHxUn4N0ErN1q_eACqdYlQbRRZY2qahRLOzys4e2EddorvQouqpvvJSADRKx5IxJRTwQle78cBRWNo8GQTU3NqKx3jw35G9W-0So</recordid><startdate>20061208</startdate><enddate>20061208</enddate><creator>Duvezin-Caubet, Stéphane</creator><creator>Jagasia, Ravi</creator><creator>Wagener, Johannes</creator><creator>Hofmann, Sabine</creator><creator>Trifunovic, Aleksandra</creator><creator>Hansson, Anna</creator><creator>Chomyn, Anne</creator><creator>Bauer, Matthias F.</creator><creator>Attardi, Giuseppe</creator><creator>Larsson, Nils-Göran</creator><creator>Neupert, Walter</creator><creator>Reichert, Andreas S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20061208</creationdate><title>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</title><author>Duvezin-Caubet, Stéphane ; Jagasia, Ravi ; Wagener, Johannes ; Hofmann, Sabine ; Trifunovic, Aleksandra ; Hansson, Anna ; Chomyn, Anne ; Bauer, Matthias F. ; Attardi, Giuseppe ; Larsson, Nils-Göran ; Neupert, Walter ; Reichert, Andreas S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-d627a17197d15b66e5b0ed01e668a83a8d2da51fe367a74797dd3900bde26bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Case-Control Studies</topic><topic>Cell Line</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Energy Metabolism</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>HeLa Cells</topic><topic>High Mobility Group Proteins - deficiency</topic><topic>High Mobility Group Proteins - genetics</topic><topic>Humans</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases - enzymology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - pathology</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Mutation</topic><topic>Protein Processing, Post-Translational</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duvezin-Caubet, Stéphane</creatorcontrib><creatorcontrib>Jagasia, Ravi</creatorcontrib><creatorcontrib>Wagener, Johannes</creatorcontrib><creatorcontrib>Hofmann, Sabine</creatorcontrib><creatorcontrib>Trifunovic, Aleksandra</creatorcontrib><creatorcontrib>Hansson, Anna</creatorcontrib><creatorcontrib>Chomyn, Anne</creatorcontrib><creatorcontrib>Bauer, Matthias F.</creatorcontrib><creatorcontrib>Attardi, Giuseppe</creatorcontrib><creatorcontrib>Larsson, Nils-Göran</creatorcontrib><creatorcontrib>Neupert, Walter</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duvezin-Caubet, Stéphane</au><au>Jagasia, Ravi</au><au>Wagener, Johannes</au><au>Hofmann, Sabine</au><au>Trifunovic, Aleksandra</au><au>Hansson, Anna</au><au>Chomyn, Anne</au><au>Bauer, Matthias F.</au><au>Attardi, Giuseppe</au><au>Larsson, Nils-Göran</au><au>Neupert, Walter</au><au>Reichert, Andreas S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</atitle><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle><addtitle>J Biol Chem</addtitle><date>2006-12-08</date><risdate>2006</risdate><volume>281</volume><issue>49</issue><spage>37972</spage><epage>37979</epage><pages>37972-37979</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many muscular and neurological disorders are associated with mitochondrial dysfunction and are often accompanied by changes in mitochondrial morphology. Mutations in the gene encoding OPA1, a protein required for fusion of mitochondria, are associated with hereditary autosomal dominant optic atrophy type I. Here we show that mitochondrial fragmentation correlates with processing of large isoforms of OPA1 in cybrid cells from a patient with myoclonus epilepsy and ragged-red fibers syndrome and in mouse embryonic fibroblasts harboring an error-prone mitochondrial mtDNA polymerase γ. Furthermore, processed OPA1 was observed in heart tissue derived from heart-specific TFAM knock-out mice suffering from mitochondrial cardiomyopathy and in skeletal muscles from patients suffering from mitochondrial myopathies such as myopathy encephalopathy lactic acidosis and stroke-like episodes. Dissipation of the mitochondrial membrane potential leads to fast induction of proteolytic processing of OPA1 and concomitant fragmentation of mitochondria. Recovery of mitochondrial fusion depended on protein synthesis and was accompanied by resynthesis of large isoforms of OPA1. Fragmentation of mitochondria was prevented by overexpressing OPA1. Taken together, our data indicate that proteolytic processing of OPA1 has a key role in inducing fragmentation of energetically compromised mitochondria. We present the hypothesis that this pathway regulates mitochondrial morphology and serves as an early response to prevent fusion of dysfunctional mitochondria with the functional mitochondrial network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17003040</pmid><doi>10.1074/jbc.M606059200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | JOURNAL OF BIOLOGICAL CHEMISTRY, 2006-12, Vol.281 (49), p.37972-37979 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_573662 |
source | MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Case-Control Studies Cell Line DNA, Mitochondrial - genetics DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics Energy Metabolism GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism HeLa Cells High Mobility Group Proteins - deficiency High Mobility Group Proteins - genetics Humans Isoenzymes - genetics Isoenzymes - metabolism Medicin och hälsovetenskap Mice Mice, Knockout Mitochondria - enzymology Mitochondria - genetics Mitochondria - pathology Mitochondrial Diseases - enzymology Mitochondrial Diseases - genetics Mitochondrial Diseases - pathology Muscle, Skeletal - enzymology Muscle, Skeletal - pathology Mutation Protein Processing, Post-Translational |
title | Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20Processing%20of%20OPA1%20Links%20Mitochondrial%20Dysfunction%20to%20Alterations%20in%20Mitochondrial%20Morphology&rft.jtitle=JOURNAL%20OF%20BIOLOGICAL%20CHEMISTRY&rft.au=Duvezin-Caubet,%20St%C3%A9phane&rft.date=2006-12-08&rft.volume=281&rft.issue=49&rft.spage=37972&rft.epage=37979&rft.pages=37972-37979&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M606059200&rft_dat=%3Cproquest_swepu%3E19505373%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19505373&rft_id=info:pmid/17003040&rft_els_id=S0021925820719733&rfr_iscdi=true |