Probing the chemistry of thioredoxin catalysis with force

Thioredoxins catalyze disulphide bond reduction in all living organisms. Single-molecule force-clamp spectroscopy has revealed that there are two alternative forms of the catalytic reaction: the first requires a reorientation of the disulphide bond in the substrate and the second involves an elongat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2007-11, Vol.450 (7166), p.124-127
Hauptverfasser: Wiita, Arun P., Perez-Jimenez, Raul, Walther, Kirstin A., Gräter, Frauke, Berne, B. J., Holmgren, Arne, Sanchez-Ruiz, Jose M., Fernandez, Julio M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 7166
container_start_page 124
container_title Nature
container_volume 450
creator Wiita, Arun P.
Perez-Jimenez, Raul
Walther, Kirstin A.
Gräter, Frauke
Berne, B. J.
Holmgren, Arne
Sanchez-Ruiz, Jose M.
Fernandez, Julio M.
description Thioredoxins catalyze disulphide bond reduction in all living organisms. Single-molecule force-clamp spectroscopy has revealed that there are two alternative forms of the catalytic reaction: the first requires a reorientation of the disulphide bond in the substrate and the second involves an elongation of the disulphide bond in the substrate. Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms 1 . Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S N 2) reaction 1 , 2 , the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy 3 , 4 , we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25–600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ± 0.09 Å (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 Å (± s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease 5 , 6 . Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme’s active site during catalysis that cannot be resolved with any other current structural biological technique.
doi_str_mv 10.1038/nature06231
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_567512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189796820</galeid><sourcerecordid>A189796820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c892t-f4a008473342b5ab0806e3091653b494c8269fedb46f2771f628bd0cb4b319a53</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEokvhxB1FSEUgSLFjxx8XpNWKj0oVICjiaDmOk3XJ2ls7od1_j6tGbAJbWPlga-aZ16-tmSR5DMExBIi9trLrvQYkR_BOMoOYkgwTRu8mMwBylgGGyEHyIIRzAEABKb6fHEDKac4YmSX8s3elsU3aLXWqlnplQuc3qatjwDivK3dlbKpkJ9tNMCG9NN0yrZ1X-mFyr5Zt0I-G_TD59u7t2eJDdvrp_clifpopxvMuq7EEgGGKEM7LQpaAAaIR4JAUqMQcK5YTXuuqxKTOKYU1yVlZAVXiEkEuC3SYZDe64VKv-1KsvVlJvxFOGjGEfsSTFgWhBcwj_-aGj5mVrpS2nZftpGyasWYpGvdTIE4QBjAKPBsEvLvodehE_BSl21Za7fogIKccM4Aj-PzfIC0Q5oji60c8_QM9d7238d9EDnBRAExGL21kq4WxtYv-VKOtjjad1bWJ4TnkCFMa8X15Fv0SloOtiQmv1uZCjEVvh0ZKxzuguKrYQGqn1f0KRje8mBREptNXXSP7EMTJ1y9T8f-yI92Xt7Pzs--Lj1PlPei_tZV3IXhd_246CMT1qIrRqEb6ybhPt-wwmxE4GgAZlGxrL60yYctxyGiBWeReDQMSU7bRfttbu-79Ba64Tpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204550465</pqid></control><display><type>article</type><title>Probing the chemistry of thioredoxin catalysis with force</title><source>MEDLINE</source><source>2022 ECC(Springer)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SWEPUB Freely available online</source><creator>Wiita, Arun P. ; Perez-Jimenez, Raul ; Walther, Kirstin A. ; Gräter, Frauke ; Berne, B. J. ; Holmgren, Arne ; Sanchez-Ruiz, Jose M. ; Fernandez, Julio M.</creator><creatorcontrib>Wiita, Arun P. ; Perez-Jimenez, Raul ; Walther, Kirstin A. ; Gräter, Frauke ; Berne, B. J. ; Holmgren, Arne ; Sanchez-Ruiz, Jose M. ; Fernandez, Julio M.</creatorcontrib><description>Thioredoxins catalyze disulphide bond reduction in all living organisms. Single-molecule force-clamp spectroscopy has revealed that there are two alternative forms of the catalytic reaction: the first requires a reorientation of the disulphide bond in the substrate and the second involves an elongation of the disulphide bond in the substrate. Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms 1 . Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S N 2) reaction 1 , 2 , the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy 3 , 4 , we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25–600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ± 0.09 Å (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 Å (± s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease 5 , 6 . Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme’s active site during catalysis that cannot be resolved with any other current structural biological technique.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature06231</identifier><identifier>PMID: 17972886</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Analytical, structural and metabolic biochemistry ; Animals ; Biochemistry ; Biological and medical sciences ; Bonding ; Cardiovascular diseases ; Catalysis ; Catalysts ; Chemical reactions ; Disulfides ; Disulfides - metabolism ; E coli ; Enzymes ; Enzymes and enzyme inhibitors ; Escherichia coli ; Escherichia coli - enzymology ; Fundamental and applied biological sciences. Psychology ; Humanities and Social Sciences ; Humans ; Kinetics ; letter ; Liver - enzymology ; Microscopy ; Microscopy, Atomic Force ; multidisciplinary ; Oxidative stress ; Oxidoreductases ; Polypeptides ; Proteins ; Rats ; Reduction ; Science ; Science (multidisciplinary) ; Spectroscopy ; Substrates ; Sulfur ; Thioredoxins - chemistry ; Thioredoxins - genetics ; Thioredoxins - metabolism</subject><ispartof>Nature, 2007-11, Vol.450 (7166), p.124-127</ispartof><rights>Springer Nature Limited 2007</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 1, 2007</rights><rights>2007 Nature Publishing Group 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c892t-f4a008473342b5ab0806e3091653b494c8269fedb46f2771f628bd0cb4b319a53</citedby><cites>FETCH-LOGICAL-c892t-f4a008473342b5ab0806e3091653b494c8269fedb46f2771f628bd0cb4b319a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature06231$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature06231$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19187548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17972886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:116088476$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiita, Arun P.</creatorcontrib><creatorcontrib>Perez-Jimenez, Raul</creatorcontrib><creatorcontrib>Walther, Kirstin A.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Holmgren, Arne</creatorcontrib><creatorcontrib>Sanchez-Ruiz, Jose M.</creatorcontrib><creatorcontrib>Fernandez, Julio M.</creatorcontrib><title>Probing the chemistry of thioredoxin catalysis with force</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Thioredoxins catalyze disulphide bond reduction in all living organisms. Single-molecule force-clamp spectroscopy has revealed that there are two alternative forms of the catalytic reaction: the first requires a reorientation of the disulphide bond in the substrate and the second involves an elongation of the disulphide bond in the substrate. Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms 1 . Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S N 2) reaction 1 , 2 , the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy 3 , 4 , we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25–600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ± 0.09 Å (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 Å (± s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease 5 , 6 . Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme’s active site during catalysis that cannot be resolved with any other current structural biological technique.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Bonding</subject><subject>Cardiovascular diseases</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Disulfides</subject><subject>Disulfides - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinetics</subject><subject>letter</subject><subject>Liver - enzymology</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>multidisciplinary</subject><subject>Oxidative stress</subject><subject>Oxidoreductases</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reduction</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Thioredoxins - chemistry</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqNk01v1DAQhiMEokvhxB1FSEUgSLFjxx8XpNWKj0oVICjiaDmOk3XJ2ls7od1_j6tGbAJbWPlga-aZ16-tmSR5DMExBIi9trLrvQYkR_BOMoOYkgwTRu8mMwBylgGGyEHyIIRzAEABKb6fHEDKac4YmSX8s3elsU3aLXWqlnplQuc3qatjwDivK3dlbKpkJ9tNMCG9NN0yrZ1X-mFyr5Zt0I-G_TD59u7t2eJDdvrp_clifpopxvMuq7EEgGGKEM7LQpaAAaIR4JAUqMQcK5YTXuuqxKTOKYU1yVlZAVXiEkEuC3SYZDe64VKv-1KsvVlJvxFOGjGEfsSTFgWhBcwj_-aGj5mVrpS2nZftpGyasWYpGvdTIE4QBjAKPBsEvLvodehE_BSl21Za7fogIKccM4Aj-PzfIC0Q5oji60c8_QM9d7238d9EDnBRAExGL21kq4WxtYv-VKOtjjad1bWJ4TnkCFMa8X15Fv0SloOtiQmv1uZCjEVvh0ZKxzuguKrYQGqn1f0KRje8mBREptNXXSP7EMTJ1y9T8f-yI92Xt7Pzs--Lj1PlPei_tZV3IXhd_246CMT1qIrRqEb6ybhPt-wwmxE4GgAZlGxrL60yYctxyGiBWeReDQMSU7bRfttbu-79Ba64Tpg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Wiita, Arun P.</creator><creator>Perez-Jimenez, Raul</creator><creator>Walther, Kirstin A.</creator><creator>Gräter, Frauke</creator><creator>Berne, B. J.</creator><creator>Holmgren, Arne</creator><creator>Sanchez-Ruiz, Jose M.</creator><creator>Fernandez, Julio M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20071101</creationdate><title>Probing the chemistry of thioredoxin catalysis with force</title><author>Wiita, Arun P. ; Perez-Jimenez, Raul ; Walther, Kirstin A. ; Gräter, Frauke ; Berne, B. J. ; Holmgren, Arne ; Sanchez-Ruiz, Jose M. ; Fernandez, Julio M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c892t-f4a008473342b5ab0806e3091653b494c8269fedb46f2771f628bd0cb4b319a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Bonding</topic><topic>Cardiovascular diseases</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Disulfides</topic><topic>Disulfides - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinetics</topic><topic>letter</topic><topic>Liver - enzymology</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>multidisciplinary</topic><topic>Oxidative stress</topic><topic>Oxidoreductases</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reduction</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Thioredoxins - chemistry</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiita, Arun P.</creatorcontrib><creatorcontrib>Perez-Jimenez, Raul</creatorcontrib><creatorcontrib>Walther, Kirstin A.</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Berne, B. J.</creatorcontrib><creatorcontrib>Holmgren, Arne</creatorcontrib><creatorcontrib>Sanchez-Ruiz, Jose M.</creatorcontrib><creatorcontrib>Fernandez, Julio M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Research Library (ProQuest)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiita, Arun P.</au><au>Perez-Jimenez, Raul</au><au>Walther, Kirstin A.</au><au>Gräter, Frauke</au><au>Berne, B. J.</au><au>Holmgren, Arne</au><au>Sanchez-Ruiz, Jose M.</au><au>Fernandez, Julio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the chemistry of thioredoxin catalysis with force</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>450</volume><issue>7166</issue><spage>124</spage><epage>127</epage><pages>124-127</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Thioredoxins catalyze disulphide bond reduction in all living organisms. Single-molecule force-clamp spectroscopy has revealed that there are two alternative forms of the catalytic reaction: the first requires a reorientation of the disulphide bond in the substrate and the second involves an elongation of the disulphide bond in the substrate. Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms 1 . Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S N 2) reaction 1 , 2 , the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy 3 , 4 , we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25–600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ± 0.09 Å (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 Å (± s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease 5 , 6 . Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme’s active site during catalysis that cannot be resolved with any other current structural biological technique.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17972886</pmid><doi>10.1038/nature06231</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2007-11, Vol.450 (7166), p.124-127
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_567512
source MEDLINE; 2022 ECC(Springer); Springer Nature - Connect here FIRST to enable access; SWEPUB Freely available online
subjects Analytical, structural and metabolic biochemistry
Animals
Biochemistry
Biological and medical sciences
Bonding
Cardiovascular diseases
Catalysis
Catalysts
Chemical reactions
Disulfides
Disulfides - metabolism
E coli
Enzymes
Enzymes and enzyme inhibitors
Escherichia coli
Escherichia coli - enzymology
Fundamental and applied biological sciences. Psychology
Humanities and Social Sciences
Humans
Kinetics
letter
Liver - enzymology
Microscopy
Microscopy, Atomic Force
multidisciplinary
Oxidative stress
Oxidoreductases
Polypeptides
Proteins
Rats
Reduction
Science
Science (multidisciplinary)
Spectroscopy
Substrates
Sulfur
Thioredoxins - chemistry
Thioredoxins - genetics
Thioredoxins - metabolism
title Probing the chemistry of thioredoxin catalysis with force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20chemistry%20of%20thioredoxin%20catalysis%20with%20force&rft.jtitle=Nature&rft.au=Wiita,%20Arun%20P.&rft.date=2007-11-01&rft.volume=450&rft.issue=7166&rft.spage=124&rft.epage=127&rft.pages=124-127&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06231&rft_dat=%3Cgale_swepu%3EA189796820%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204550465&rft_id=info:pmid/17972886&rft_galeid=A189796820&rfr_iscdi=true