Selecting anti-HIV therapies based on a variety of genomic and clinical factors
Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy fai...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2008-07, Vol.24 (13), p.i399-i406 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i406 |
---|---|
container_issue | 13 |
container_start_page | i399 |
container_title | Bioinformatics |
container_volume | 24 |
creator | Rosen-Zvi, Michal Altmann, Andre Prosperi, Mattia Aharoni, Ehud Neuvirth, Hani Sönnerborg, Anders Schülter, Eugen Struck, Daniel Peres, Yardena Incardona, Francesca Kaiser, Rolf Zazzi, Maurizio Lengauer, Thomas |
description | Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com |
doi_str_mv | 10.1093/bioinformatics/btn141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_563549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn141</oup_id><sourcerecordid>1504932571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EomXhJ4AsDtxC7fgzFyRUPrZSRUEFhLhYjuNs3Wbtre0U-u9xlKiwXODkked5X49nBoCnGL3EqCFHrQvO9yFudXYmHbXZY4rvgUNMOapqxJr7JSZcVFQicgAepXSJEMOU0ofgAEsmuaDoEJyd28Ga7PwGap9dtT75CvOFjXrnbIKtTraDwUMNb3R0Nt_C0MON9WHrTBF00AzOO6MH2GuTQ0yPwYNeD8k-Wc4V-PLu7efjdXV69v7k-PVpZThDuRRoWs67Vre6Y7QhTDNtZUuMkJh1wgiNreRSdm3TCM66WtCG07YzWKKuxjVZgWr2TT_sbmzVLrqtjrcqaKeWq6sSWcU4mR5YgVczXzJb2xnrc9TDnmw_492F2oQbVQssOZ4MXiwGMVyPNmW1dcnYYdDehjEp3tRTR-k_QUJow2o5gc__Ai_DGH3pmsJNGY_EmBSIzZCJIaVo-7uSMVLTIqj9RVDzIhTdsz__-1u1TL4AaAbCuPtvz6XnLmX7806k45Xiggim1t--qzfneE0_fGLqI_kF4hTV8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198678113</pqid></control><display><type>article</type><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</creator><creatorcontrib>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</creatorcontrib><description>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn141</identifier><identifier>PMID: 18586740</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Anti-HIV Agents - therapeutic use ; Chromosome Mapping - methods ; Decision Support Systems, Clinical ; Genetic Predisposition to Disease - genetics ; HIV Infections - drug therapy ; HIV Infections - genetics ; Humans ; Outcome Assessment (Health Care) - methods ; Pharmacogenetics - methods</subject><ispartof>Bioinformatics, 2008-07, Vol.24 (13), p.i399-i406</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</citedby><cites>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,550,723,776,780,785,786,881,1598,23910,23911,25119,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18586740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:117242156$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosen-Zvi, Michal</creatorcontrib><creatorcontrib>Altmann, Andre</creatorcontrib><creatorcontrib>Prosperi, Mattia</creatorcontrib><creatorcontrib>Aharoni, Ehud</creatorcontrib><creatorcontrib>Neuvirth, Hani</creatorcontrib><creatorcontrib>Sönnerborg, Anders</creatorcontrib><creatorcontrib>Schülter, Eugen</creatorcontrib><creatorcontrib>Struck, Daniel</creatorcontrib><creatorcontrib>Peres, Yardena</creatorcontrib><creatorcontrib>Incardona, Francesca</creatorcontrib><creatorcontrib>Kaiser, Rolf</creatorcontrib><creatorcontrib>Zazzi, Maurizio</creatorcontrib><creatorcontrib>Lengauer, Thomas</creatorcontrib><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</description><subject>Anti-HIV Agents - therapeutic use</subject><subject>Chromosome Mapping - methods</subject><subject>Decision Support Systems, Clinical</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - genetics</subject><subject>Humans</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Pharmacogenetics - methods</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqNkk1v1DAQhi0EomXhJ4AsDtxC7fgzFyRUPrZSRUEFhLhYjuNs3Wbtre0U-u9xlKiwXODkked5X49nBoCnGL3EqCFHrQvO9yFudXYmHbXZY4rvgUNMOapqxJr7JSZcVFQicgAepXSJEMOU0ofgAEsmuaDoEJyd28Ga7PwGap9dtT75CvOFjXrnbIKtTraDwUMNb3R0Nt_C0MON9WHrTBF00AzOO6MH2GuTQ0yPwYNeD8k-Wc4V-PLu7efjdXV69v7k-PVpZThDuRRoWs67Vre6Y7QhTDNtZUuMkJh1wgiNreRSdm3TCM66WtCG07YzWKKuxjVZgWr2TT_sbmzVLrqtjrcqaKeWq6sSWcU4mR5YgVczXzJb2xnrc9TDnmw_492F2oQbVQssOZ4MXiwGMVyPNmW1dcnYYdDehjEp3tRTR-k_QUJow2o5gc__Ai_DGH3pmsJNGY_EmBSIzZCJIaVo-7uSMVLTIqj9RVDzIhTdsz__-1u1TL4AaAbCuPtvz6XnLmX7806k45Xiggim1t--qzfneE0_fGLqI_kF4hTV8A</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Rosen-Zvi, Michal</creator><creator>Altmann, Andre</creator><creator>Prosperi, Mattia</creator><creator>Aharoni, Ehud</creator><creator>Neuvirth, Hani</creator><creator>Sönnerborg, Anders</creator><creator>Schülter, Eugen</creator><creator>Struck, Daniel</creator><creator>Peres, Yardena</creator><creator>Incardona, Francesca</creator><creator>Kaiser, Rolf</creator><creator>Zazzi, Maurizio</creator><creator>Lengauer, Thomas</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>BVBDO</scope><scope>D8T</scope></search><sort><creationdate>20080701</creationdate><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><author>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anti-HIV Agents - therapeutic use</topic><topic>Chromosome Mapping - methods</topic><topic>Decision Support Systems, Clinical</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - genetics</topic><topic>Humans</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Pharmacogenetics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosen-Zvi, Michal</creatorcontrib><creatorcontrib>Altmann, Andre</creatorcontrib><creatorcontrib>Prosperi, Mattia</creatorcontrib><creatorcontrib>Aharoni, Ehud</creatorcontrib><creatorcontrib>Neuvirth, Hani</creatorcontrib><creatorcontrib>Sönnerborg, Anders</creatorcontrib><creatorcontrib>Schülter, Eugen</creatorcontrib><creatorcontrib>Struck, Daniel</creatorcontrib><creatorcontrib>Peres, Yardena</creatorcontrib><creatorcontrib>Incardona, Francesca</creatorcontrib><creatorcontrib>Kaiser, Rolf</creatorcontrib><creatorcontrib>Zazzi, Maurizio</creatorcontrib><creatorcontrib>Lengauer, Thomas</creatorcontrib><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SwePub Conference full text</collection><collection>SWEPUB Freely available online</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosen-Zvi, Michal</au><au>Altmann, Andre</au><au>Prosperi, Mattia</au><au>Aharoni, Ehud</au><au>Neuvirth, Hani</au><au>Sönnerborg, Anders</au><au>Schülter, Eugen</au><au>Struck, Daniel</au><au>Peres, Yardena</au><au>Incardona, Francesca</au><au>Kaiser, Rolf</au><au>Zazzi, Maurizio</au><au>Lengauer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>i399</spage><epage>i406</epage><pages>i399-i406</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18586740</pmid><doi>10.1093/bioinformatics/btn141</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2008-07, Vol.24 (13), p.i399-i406 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_563549 |
source | MEDLINE; SWEPUB Freely available online; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Anti-HIV Agents - therapeutic use Chromosome Mapping - methods Decision Support Systems, Clinical Genetic Predisposition to Disease - genetics HIV Infections - drug therapy HIV Infections - genetics Humans Outcome Assessment (Health Care) - methods Pharmacogenetics - methods |
title | Selecting anti-HIV therapies based on a variety of genomic and clinical factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20anti-HIV%20therapies%20based%20on%20a%20variety%20of%20genomic%20and%20clinical%20factors&rft.jtitle=Bioinformatics&rft.au=Rosen-Zvi,%20Michal&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=i399&rft.epage=i406&rft.pages=i399-i406&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn141&rft_dat=%3Cproquest_swepu%3E1504932571%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198678113&rft_id=info:pmid/18586740&rft_oup_id=10.1093/bioinformatics/btn141&rfr_iscdi=true |