Selecting anti-HIV therapies based on a variety of genomic and clinical factors

Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy fai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2008-07, Vol.24 (13), p.i399-i406
Hauptverfasser: Rosen-Zvi, Michal, Altmann, Andre, Prosperi, Mattia, Aharoni, Ehud, Neuvirth, Hani, Sönnerborg, Anders, Schülter, Eugen, Struck, Daniel, Peres, Yardena, Incardona, Francesca, Kaiser, Rolf, Zazzi, Maurizio, Lengauer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i406
container_issue 13
container_start_page i399
container_title Bioinformatics
container_volume 24
creator Rosen-Zvi, Michal
Altmann, Andre
Prosperi, Mattia
Aharoni, Ehud
Neuvirth, Hani
Sönnerborg, Anders
Schülter, Eugen
Struck, Daniel
Peres, Yardena
Incardona, Francesca
Kaiser, Rolf
Zazzi, Maurizio
Lengauer, Thomas
description Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com
doi_str_mv 10.1093/bioinformatics/btn141
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_563549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn141</oup_id><sourcerecordid>1504932571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EomXhJ4AsDtxC7fgzFyRUPrZSRUEFhLhYjuNs3Wbtre0U-u9xlKiwXODkked5X49nBoCnGL3EqCFHrQvO9yFudXYmHbXZY4rvgUNMOapqxJr7JSZcVFQicgAepXSJEMOU0ofgAEsmuaDoEJyd28Ga7PwGap9dtT75CvOFjXrnbIKtTraDwUMNb3R0Nt_C0MON9WHrTBF00AzOO6MH2GuTQ0yPwYNeD8k-Wc4V-PLu7efjdXV69v7k-PVpZThDuRRoWs67Vre6Y7QhTDNtZUuMkJh1wgiNreRSdm3TCM66WtCG07YzWKKuxjVZgWr2TT_sbmzVLrqtjrcqaKeWq6sSWcU4mR5YgVczXzJb2xnrc9TDnmw_492F2oQbVQssOZ4MXiwGMVyPNmW1dcnYYdDehjEp3tRTR-k_QUJow2o5gc__Ai_DGH3pmsJNGY_EmBSIzZCJIaVo-7uSMVLTIqj9RVDzIhTdsz__-1u1TL4AaAbCuPtvz6XnLmX7806k45Xiggim1t--qzfneE0_fGLqI_kF4hTV8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198678113</pqid></control><display><type>article</type><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</creator><creatorcontrib>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</creatorcontrib><description>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn141</identifier><identifier>PMID: 18586740</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Anti-HIV Agents - therapeutic use ; Chromosome Mapping - methods ; Decision Support Systems, Clinical ; Genetic Predisposition to Disease - genetics ; HIV Infections - drug therapy ; HIV Infections - genetics ; Humans ; Outcome Assessment (Health Care) - methods ; Pharmacogenetics - methods</subject><ispartof>Bioinformatics, 2008-07, Vol.24 (13), p.i399-i406</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</citedby><cites>FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,550,723,776,780,785,786,881,1598,23910,23911,25119,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18586740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:117242156$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosen-Zvi, Michal</creatorcontrib><creatorcontrib>Altmann, Andre</creatorcontrib><creatorcontrib>Prosperi, Mattia</creatorcontrib><creatorcontrib>Aharoni, Ehud</creatorcontrib><creatorcontrib>Neuvirth, Hani</creatorcontrib><creatorcontrib>Sönnerborg, Anders</creatorcontrib><creatorcontrib>Schülter, Eugen</creatorcontrib><creatorcontrib>Struck, Daniel</creatorcontrib><creatorcontrib>Peres, Yardena</creatorcontrib><creatorcontrib>Incardona, Francesca</creatorcontrib><creatorcontrib>Kaiser, Rolf</creatorcontrib><creatorcontrib>Zazzi, Maurizio</creatorcontrib><creatorcontrib>Lengauer, Thomas</creatorcontrib><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</description><subject>Anti-HIV Agents - therapeutic use</subject><subject>Chromosome Mapping - methods</subject><subject>Decision Support Systems, Clinical</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - genetics</subject><subject>Humans</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Pharmacogenetics - methods</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqNkk1v1DAQhi0EomXhJ4AsDtxC7fgzFyRUPrZSRUEFhLhYjuNs3Wbtre0U-u9xlKiwXODkked5X49nBoCnGL3EqCFHrQvO9yFudXYmHbXZY4rvgUNMOapqxJr7JSZcVFQicgAepXSJEMOU0ofgAEsmuaDoEJyd28Ga7PwGap9dtT75CvOFjXrnbIKtTraDwUMNb3R0Nt_C0MON9WHrTBF00AzOO6MH2GuTQ0yPwYNeD8k-Wc4V-PLu7efjdXV69v7k-PVpZThDuRRoWs67Vre6Y7QhTDNtZUuMkJh1wgiNreRSdm3TCM66WtCG07YzWKKuxjVZgWr2TT_sbmzVLrqtjrcqaKeWq6sSWcU4mR5YgVczXzJb2xnrc9TDnmw_492F2oQbVQssOZ4MXiwGMVyPNmW1dcnYYdDehjEp3tRTR-k_QUJow2o5gc__Ai_DGH3pmsJNGY_EmBSIzZCJIaVo-7uSMVLTIqj9RVDzIhTdsz__-1u1TL4AaAbCuPtvz6XnLmX7806k45Xiggim1t--qzfneE0_fGLqI_kF4hTV8A</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Rosen-Zvi, Michal</creator><creator>Altmann, Andre</creator><creator>Prosperi, Mattia</creator><creator>Aharoni, Ehud</creator><creator>Neuvirth, Hani</creator><creator>Sönnerborg, Anders</creator><creator>Schülter, Eugen</creator><creator>Struck, Daniel</creator><creator>Peres, Yardena</creator><creator>Incardona, Francesca</creator><creator>Kaiser, Rolf</creator><creator>Zazzi, Maurizio</creator><creator>Lengauer, Thomas</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>BVBDO</scope><scope>D8T</scope></search><sort><creationdate>20080701</creationdate><title>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</title><author>Rosen-Zvi, Michal ; Altmann, Andre ; Prosperi, Mattia ; Aharoni, Ehud ; Neuvirth, Hani ; Sönnerborg, Anders ; Schülter, Eugen ; Struck, Daniel ; Peres, Yardena ; Incardona, Francesca ; Kaiser, Rolf ; Zazzi, Maurizio ; Lengauer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-20cb66dbabad54935a5ae8b3c7815d7c7a1e8688db99765d274964bdc180d2123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anti-HIV Agents - therapeutic use</topic><topic>Chromosome Mapping - methods</topic><topic>Decision Support Systems, Clinical</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - genetics</topic><topic>Humans</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Pharmacogenetics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosen-Zvi, Michal</creatorcontrib><creatorcontrib>Altmann, Andre</creatorcontrib><creatorcontrib>Prosperi, Mattia</creatorcontrib><creatorcontrib>Aharoni, Ehud</creatorcontrib><creatorcontrib>Neuvirth, Hani</creatorcontrib><creatorcontrib>Sönnerborg, Anders</creatorcontrib><creatorcontrib>Schülter, Eugen</creatorcontrib><creatorcontrib>Struck, Daniel</creatorcontrib><creatorcontrib>Peres, Yardena</creatorcontrib><creatorcontrib>Incardona, Francesca</creatorcontrib><creatorcontrib>Kaiser, Rolf</creatorcontrib><creatorcontrib>Zazzi, Maurizio</creatorcontrib><creatorcontrib>Lengauer, Thomas</creatorcontrib><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SwePub Conference full text</collection><collection>SWEPUB Freely available online</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosen-Zvi, Michal</au><au>Altmann, Andre</au><au>Prosperi, Mattia</au><au>Aharoni, Ehud</au><au>Neuvirth, Hani</au><au>Sönnerborg, Anders</au><au>Schülter, Eugen</au><au>Struck, Daniel</au><au>Peres, Yardena</au><au>Incardona, Francesca</au><au>Kaiser, Rolf</au><au>Zazzi, Maurizio</au><au>Lengauer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting anti-HIV therapies based on a variety of genomic and clinical factors</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>i399</spage><epage>i406</epage><pages>i399-i406</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: rosen@il.ibm.com</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18586740</pmid><doi>10.1093/bioinformatics/btn141</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2008-07, Vol.24 (13), p.i399-i406
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_563549
source MEDLINE; SWEPUB Freely available online; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Anti-HIV Agents - therapeutic use
Chromosome Mapping - methods
Decision Support Systems, Clinical
Genetic Predisposition to Disease - genetics
HIV Infections - drug therapy
HIV Infections - genetics
Humans
Outcome Assessment (Health Care) - methods
Pharmacogenetics - methods
title Selecting anti-HIV therapies based on a variety of genomic and clinical factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20anti-HIV%20therapies%20based%20on%20a%20variety%20of%20genomic%20and%20clinical%20factors&rft.jtitle=Bioinformatics&rft.au=Rosen-Zvi,%20Michal&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=i399&rft.epage=i406&rft.pages=i399-i406&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn141&rft_dat=%3Cproquest_swepu%3E1504932571%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198678113&rft_id=info:pmid/18586740&rft_oup_id=10.1093/bioinformatics/btn141&rfr_iscdi=true