Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses

Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and experimental allergy 2009-12, Vol.39 (12), p.1842-1851
Hauptverfasser: Sjögren, Y. M., Tomicic, S., Lundberg, A., Böttcher, M. F., Björkstén, B., Sverremark-Ekström, E., Jenmalm, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1851
container_issue 12
container_start_page 1842
container_title Clinical and experimental allergy
container_volume 39
creator Sjögren, Y. M.
Tomicic, S.
Lundberg, A.
Böttcher, M. F.
Björkstén, B.
Sverremark-Ekström, E.
Jenmalm, M. C.
description Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear. Objective To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs). Methods Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex. Results The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples. Conclusion Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.
doi_str_mv 10.1111/j.1365-2222.2009.03326.x
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_556025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733888051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</originalsourceid><addsrcrecordid>eNp1kkFz0zAQhTUMDA2Fv8DownDBRrYkSzpwCKEtnSlwAcptR5blRqltBcuaJv8emYT0xF60kr59h30PIVyQvEj1fpMXtOJZmSovCVE5obSs8t0TtDh9PEULojjLhFTsDL0IYUMIoVzJ5-isUILyUrAFaq-Htot2MBb7Fls9dnt8FyfcOzP62vlJYz_gaW1xr6c46smlayLN2nXN2vsG99H4oDushwaHfZhsGsWu7-Ng8WjD1g_BhpfoWau7YF8dz3P04_Li--pzdvPt6nq1vMkMJ7LKKl0VXJraska1taS1kqxuS2U4V7WtW8OVYoUwlRCNMdQK2jSElY1WLUuYpucoO-iGB7uNNWxH1-txD147OD7dp84C5xUpeeLf_Zf_5H4uwY930LkIaVukSPjbA74d_e9owwS9C8Z2nR6sjwEEpVJKwmfy9ZGMdW-bk_C_zSfgzRHQweiuHfVgXDhxZVlwJuQs9OHAPbjO7h91CMxJgA3MhsNsOMxJgL9JgB2sLpZz97gRl6zZneb1eA-VoILD7dcrYLcfL38J-QUY_QPMmLfq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733888051</pqid></control><display><type>article</type><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>SWEPUB Freely available online</source><creator>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</creator><creatorcontrib>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</creatorcontrib><description>Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear. Objective To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs). Methods Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex. Results The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples. Conclusion Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</description><identifier>ISSN: 0954-7894</identifier><identifier>ISSN: 1365-2222</identifier><identifier>EISSN: 1365-2222</identifier><identifier>DOI: 10.1111/j.1365-2222.2009.03326.x</identifier><identifier>PMID: 19735274</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacteroides fragilis ; Bacteroides fragilis - genetics ; Bacteroides fragilis - immunology ; Bacteroides fragilis - isolation &amp; purification ; bifidobacteria ; Bifidobacterium - genetics ; Bifidobacterium - immunology ; Bifidobacterium - isolation &amp; purification ; Biological and medical sciences ; Chemokine CCL4 - metabolism ; Child, Preschool ; Clostridium difficile ; Clostridium difficile - genetics ; Clostridium difficile - immunology ; Clostridium difficile - isolation &amp; purification ; Feces - microbiology ; Female ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Gene Expression - genetics ; Gene Expression - immunology ; gut microbiota ; Humans ; Immune System - growth &amp; development ; Immune System - immunology ; Immunity - immunology ; Immunity, Mucosal - immunology ; Immunoglobulin A, Secretory - immunology ; Infant ; Infant, Newborn ; Interferon-gamma - metabolism ; Interleukin-6 - metabolism ; Interleukins - metabolism ; Intestines - immunology ; Intestines - microbiology ; lactobacilli ; Lactobacillus - genetics ; Lactobacillus - immunology ; Lactobacillus - isolation &amp; purification ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - immunology ; Leukocytes, Mononuclear - metabolism ; Lipopolysaccharides - pharmacology ; Longitudinal Studies ; Male ; MEDICIN ; MEDICINE ; Metagenome - immunology ; Phytohemagglutinins - pharmacology ; Saliva - immunology ; SIgA ; TLR2 ; TLR4 ; Toll-Like Receptor 4 - genetics ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Clinical and experimental allergy, 2009-12, Vol.39 (12), p.1842-1851</ispartof><rights>2009 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2222.2009.03326.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2222.2009.03326.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22154781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19735274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52701$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:119598613$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sjögren, Y. M.</creatorcontrib><creatorcontrib>Tomicic, S.</creatorcontrib><creatorcontrib>Lundberg, A.</creatorcontrib><creatorcontrib>Böttcher, M. F.</creatorcontrib><creatorcontrib>Björkstén, B.</creatorcontrib><creatorcontrib>Sverremark-Ekström, E.</creatorcontrib><creatorcontrib>Jenmalm, M. C.</creatorcontrib><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><title>Clinical and experimental allergy</title><addtitle>Clin Exp Allergy</addtitle><description>Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear. Objective To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs). Methods Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex. Results The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples. Conclusion Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</description><subject>Bacteroides fragilis</subject><subject>Bacteroides fragilis - genetics</subject><subject>Bacteroides fragilis - immunology</subject><subject>Bacteroides fragilis - isolation &amp; purification</subject><subject>bifidobacteria</subject><subject>Bifidobacterium - genetics</subject><subject>Bifidobacterium - immunology</subject><subject>Bifidobacterium - isolation &amp; purification</subject><subject>Biological and medical sciences</subject><subject>Chemokine CCL4 - metabolism</subject><subject>Child, Preschool</subject><subject>Clostridium difficile</subject><subject>Clostridium difficile - genetics</subject><subject>Clostridium difficile - immunology</subject><subject>Clostridium difficile - isolation &amp; purification</subject><subject>Feces - microbiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Gene Expression - genetics</subject><subject>Gene Expression - immunology</subject><subject>gut microbiota</subject><subject>Humans</subject><subject>Immune System - growth &amp; development</subject><subject>Immune System - immunology</subject><subject>Immunity - immunology</subject><subject>Immunity, Mucosal - immunology</subject><subject>Immunoglobulin A, Secretory - immunology</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukins - metabolism</subject><subject>Intestines - immunology</subject><subject>Intestines - microbiology</subject><subject>lactobacilli</subject><subject>Lactobacillus - genetics</subject><subject>Lactobacillus - immunology</subject><subject>Lactobacillus - isolation &amp; purification</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - immunology</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Metagenome - immunology</subject><subject>Phytohemagglutinins - pharmacology</subject><subject>Saliva - immunology</subject><subject>SIgA</subject><subject>TLR2</subject><subject>TLR4</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>0954-7894</issn><issn>1365-2222</issn><issn>1365-2222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kkFz0zAQhTUMDA2Fv8DownDBRrYkSzpwCKEtnSlwAcptR5blRqltBcuaJv8emYT0xF60kr59h30PIVyQvEj1fpMXtOJZmSovCVE5obSs8t0TtDh9PEULojjLhFTsDL0IYUMIoVzJ5-isUILyUrAFaq-Htot2MBb7Fls9dnt8FyfcOzP62vlJYz_gaW1xr6c46smlayLN2nXN2vsG99H4oDushwaHfZhsGsWu7-Ng8WjD1g_BhpfoWau7YF8dz3P04_Li--pzdvPt6nq1vMkMJ7LKKl0VXJraska1taS1kqxuS2U4V7WtW8OVYoUwlRCNMdQK2jSElY1WLUuYpucoO-iGB7uNNWxH1-txD147OD7dp84C5xUpeeLf_Zf_5H4uwY930LkIaVukSPjbA74d_e9owwS9C8Z2nR6sjwEEpVJKwmfy9ZGMdW-bk_C_zSfgzRHQweiuHfVgXDhxZVlwJuQs9OHAPbjO7h91CMxJgA3MhsNsOMxJgL9JgB2sLpZz97gRl6zZneb1eA-VoILD7dcrYLcfL38J-QUY_QPMmLfq</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Sjögren, Y. M.</creator><creator>Tomicic, S.</creator><creator>Lundberg, A.</creator><creator>Böttcher, M. F.</creator><creator>Björkstén, B.</creator><creator>Sverremark-Ekström, E.</creator><creator>Jenmalm, M. C.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>200912</creationdate><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><author>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteroides fragilis</topic><topic>Bacteroides fragilis - genetics</topic><topic>Bacteroides fragilis - immunology</topic><topic>Bacteroides fragilis - isolation &amp; purification</topic><topic>bifidobacteria</topic><topic>Bifidobacterium - genetics</topic><topic>Bifidobacterium - immunology</topic><topic>Bifidobacterium - isolation &amp; purification</topic><topic>Biological and medical sciences</topic><topic>Chemokine CCL4 - metabolism</topic><topic>Child, Preschool</topic><topic>Clostridium difficile</topic><topic>Clostridium difficile - genetics</topic><topic>Clostridium difficile - immunology</topic><topic>Clostridium difficile - isolation &amp; purification</topic><topic>Feces - microbiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Gene Expression - genetics</topic><topic>Gene Expression - immunology</topic><topic>gut microbiota</topic><topic>Humans</topic><topic>Immune System - growth &amp; development</topic><topic>Immune System - immunology</topic><topic>Immunity - immunology</topic><topic>Immunity, Mucosal - immunology</topic><topic>Immunoglobulin A, Secretory - immunology</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukins - metabolism</topic><topic>Intestines - immunology</topic><topic>Intestines - microbiology</topic><topic>lactobacilli</topic><topic>Lactobacillus - genetics</topic><topic>Lactobacillus - immunology</topic><topic>Lactobacillus - isolation &amp; purification</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - immunology</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Metagenome - immunology</topic><topic>Phytohemagglutinins - pharmacology</topic><topic>Saliva - immunology</topic><topic>SIgA</topic><topic>TLR2</topic><topic>TLR4</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sjögren, Y. M.</creatorcontrib><creatorcontrib>Tomicic, S.</creatorcontrib><creatorcontrib>Lundberg, A.</creatorcontrib><creatorcontrib>Böttcher, M. F.</creatorcontrib><creatorcontrib>Björkstén, B.</creatorcontrib><creatorcontrib>Sverremark-Ekström, E.</creatorcontrib><creatorcontrib>Jenmalm, M. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Clinical and experimental allergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sjögren, Y. M.</au><au>Tomicic, S.</au><au>Lundberg, A.</au><au>Böttcher, M. F.</au><au>Björkstén, B.</au><au>Sverremark-Ekström, E.</au><au>Jenmalm, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</atitle><jtitle>Clinical and experimental allergy</jtitle><addtitle>Clin Exp Allergy</addtitle><date>2009-12</date><risdate>2009</risdate><volume>39</volume><issue>12</issue><spage>1842</spage><epage>1851</epage><pages>1842-1851</pages><issn>0954-7894</issn><issn>1365-2222</issn><eissn>1365-2222</eissn><abstract>Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear. Objective To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs). Methods Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex. Results The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples. Conclusion Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19735274</pmid><doi>10.1111/j.1365-2222.2009.03326.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-7894
ispartof Clinical and experimental allergy, 2009-12, Vol.39 (12), p.1842-1851
issn 0954-7894
1365-2222
1365-2222
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_556025
source MEDLINE; Wiley Online Library All Journals; SWEPUB Freely available online
subjects Bacteroides fragilis
Bacteroides fragilis - genetics
Bacteroides fragilis - immunology
Bacteroides fragilis - isolation & purification
bifidobacteria
Bifidobacterium - genetics
Bifidobacterium - immunology
Bifidobacterium - isolation & purification
Biological and medical sciences
Chemokine CCL4 - metabolism
Child, Preschool
Clostridium difficile
Clostridium difficile - genetics
Clostridium difficile - immunology
Clostridium difficile - isolation & purification
Feces - microbiology
Female
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Gene Expression - genetics
Gene Expression - immunology
gut microbiota
Humans
Immune System - growth & development
Immune System - immunology
Immunity - immunology
Immunity, Mucosal - immunology
Immunoglobulin A, Secretory - immunology
Infant
Infant, Newborn
Interferon-gamma - metabolism
Interleukin-6 - metabolism
Interleukins - metabolism
Intestines - immunology
Intestines - microbiology
lactobacilli
Lactobacillus - genetics
Lactobacillus - immunology
Lactobacillus - isolation & purification
Leukocytes, Mononuclear - drug effects
Leukocytes, Mononuclear - immunology
Leukocytes, Mononuclear - metabolism
Lipopolysaccharides - pharmacology
Longitudinal Studies
Male
MEDICIN
MEDICINE
Metagenome - immunology
Phytohemagglutinins - pharmacology
Saliva - immunology
SIgA
TLR2
TLR4
Toll-Like Receptor 4 - genetics
Tumor Necrosis Factor-alpha - metabolism
title Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20early%20gut%20microbiota%20on%20the%20maturation%20of%20childhood%20mucosal%20and%20systemic%20immune%20responses&rft.jtitle=Clinical%20and%20experimental%20allergy&rft.au=Sj%C3%B6gren,%20Y.%20M.&rft.date=2009-12&rft.volume=39&rft.issue=12&rft.spage=1842&rft.epage=1851&rft.pages=1842-1851&rft.issn=0954-7894&rft.eissn=1365-2222&rft_id=info:doi/10.1111/j.1365-2222.2009.03326.x&rft_dat=%3Cproquest_swepu%3E733888051%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733888051&rft_id=info:pmid/19735274&rfr_iscdi=true