Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses
Summary Introduction Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with le...
Gespeichert in:
Veröffentlicht in: | Clinical and experimental allergy 2009-12, Vol.39 (12), p.1842-1851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1851 |
---|---|
container_issue | 12 |
container_start_page | 1842 |
container_title | Clinical and experimental allergy |
container_volume | 39 |
creator | Sjögren, Y. M. Tomicic, S. Lundberg, A. Böttcher, M. F. Björkstén, B. Sverremark-Ekström, E. Jenmalm, M. C. |
description | Summary
Introduction
Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear.
Objective
To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs).
Methods
Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex.
Results
The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples.
Conclusion
Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy. |
doi_str_mv | 10.1111/j.1365-2222.2009.03326.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_556025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733888051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</originalsourceid><addsrcrecordid>eNp1kkFz0zAQhTUMDA2Fv8DownDBRrYkSzpwCKEtnSlwAcptR5blRqltBcuaJv8emYT0xF60kr59h30PIVyQvEj1fpMXtOJZmSovCVE5obSs8t0TtDh9PEULojjLhFTsDL0IYUMIoVzJ5-isUILyUrAFaq-Htot2MBb7Fls9dnt8FyfcOzP62vlJYz_gaW1xr6c46smlayLN2nXN2vsG99H4oDushwaHfZhsGsWu7-Ng8WjD1g_BhpfoWau7YF8dz3P04_Li--pzdvPt6nq1vMkMJ7LKKl0VXJraska1taS1kqxuS2U4V7WtW8OVYoUwlRCNMdQK2jSElY1WLUuYpucoO-iGB7uNNWxH1-txD147OD7dp84C5xUpeeLf_Zf_5H4uwY930LkIaVukSPjbA74d_e9owwS9C8Z2nR6sjwEEpVJKwmfy9ZGMdW-bk_C_zSfgzRHQweiuHfVgXDhxZVlwJuQs9OHAPbjO7h91CMxJgA3MhsNsOMxJgL9JgB2sLpZz97gRl6zZneb1eA-VoILD7dcrYLcfL38J-QUY_QPMmLfq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733888051</pqid></control><display><type>article</type><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>SWEPUB Freely available online</source><creator>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</creator><creatorcontrib>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</creatorcontrib><description>Summary
Introduction
Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear.
Objective
To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs).
Methods
Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex.
Results
The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples.
Conclusion
Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</description><identifier>ISSN: 0954-7894</identifier><identifier>ISSN: 1365-2222</identifier><identifier>EISSN: 1365-2222</identifier><identifier>DOI: 10.1111/j.1365-2222.2009.03326.x</identifier><identifier>PMID: 19735274</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacteroides fragilis ; Bacteroides fragilis - genetics ; Bacteroides fragilis - immunology ; Bacteroides fragilis - isolation & purification ; bifidobacteria ; Bifidobacterium - genetics ; Bifidobacterium - immunology ; Bifidobacterium - isolation & purification ; Biological and medical sciences ; Chemokine CCL4 - metabolism ; Child, Preschool ; Clostridium difficile ; Clostridium difficile - genetics ; Clostridium difficile - immunology ; Clostridium difficile - isolation & purification ; Feces - microbiology ; Female ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Gene Expression - genetics ; Gene Expression - immunology ; gut microbiota ; Humans ; Immune System - growth & development ; Immune System - immunology ; Immunity - immunology ; Immunity, Mucosal - immunology ; Immunoglobulin A, Secretory - immunology ; Infant ; Infant, Newborn ; Interferon-gamma - metabolism ; Interleukin-6 - metabolism ; Interleukins - metabolism ; Intestines - immunology ; Intestines - microbiology ; lactobacilli ; Lactobacillus - genetics ; Lactobacillus - immunology ; Lactobacillus - isolation & purification ; Leukocytes, Mononuclear - drug effects ; Leukocytes, Mononuclear - immunology ; Leukocytes, Mononuclear - metabolism ; Lipopolysaccharides - pharmacology ; Longitudinal Studies ; Male ; MEDICIN ; MEDICINE ; Metagenome - immunology ; Phytohemagglutinins - pharmacology ; Saliva - immunology ; SIgA ; TLR2 ; TLR4 ; Toll-Like Receptor 4 - genetics ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Clinical and experimental allergy, 2009-12, Vol.39 (12), p.1842-1851</ispartof><rights>2009 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2222.2009.03326.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2222.2009.03326.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22154781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19735274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-52701$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:119598613$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sjögren, Y. M.</creatorcontrib><creatorcontrib>Tomicic, S.</creatorcontrib><creatorcontrib>Lundberg, A.</creatorcontrib><creatorcontrib>Böttcher, M. F.</creatorcontrib><creatorcontrib>Björkstén, B.</creatorcontrib><creatorcontrib>Sverremark-Ekström, E.</creatorcontrib><creatorcontrib>Jenmalm, M. C.</creatorcontrib><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><title>Clinical and experimental allergy</title><addtitle>Clin Exp Allergy</addtitle><description>Summary
Introduction
Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear.
Objective
To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs).
Methods
Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex.
Results
The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples.
Conclusion
Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</description><subject>Bacteroides fragilis</subject><subject>Bacteroides fragilis - genetics</subject><subject>Bacteroides fragilis - immunology</subject><subject>Bacteroides fragilis - isolation & purification</subject><subject>bifidobacteria</subject><subject>Bifidobacterium - genetics</subject><subject>Bifidobacterium - immunology</subject><subject>Bifidobacterium - isolation & purification</subject><subject>Biological and medical sciences</subject><subject>Chemokine CCL4 - metabolism</subject><subject>Child, Preschool</subject><subject>Clostridium difficile</subject><subject>Clostridium difficile - genetics</subject><subject>Clostridium difficile - immunology</subject><subject>Clostridium difficile - isolation & purification</subject><subject>Feces - microbiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Gene Expression - genetics</subject><subject>Gene Expression - immunology</subject><subject>gut microbiota</subject><subject>Humans</subject><subject>Immune System - growth & development</subject><subject>Immune System - immunology</subject><subject>Immunity - immunology</subject><subject>Immunity, Mucosal - immunology</subject><subject>Immunoglobulin A, Secretory - immunology</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin-6 - metabolism</subject><subject>Interleukins - metabolism</subject><subject>Intestines - immunology</subject><subject>Intestines - microbiology</subject><subject>lactobacilli</subject><subject>Lactobacillus - genetics</subject><subject>Lactobacillus - immunology</subject><subject>Lactobacillus - isolation & purification</subject><subject>Leukocytes, Mononuclear - drug effects</subject><subject>Leukocytes, Mononuclear - immunology</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Metagenome - immunology</subject><subject>Phytohemagglutinins - pharmacology</subject><subject>Saliva - immunology</subject><subject>SIgA</subject><subject>TLR2</subject><subject>TLR4</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>0954-7894</issn><issn>1365-2222</issn><issn>1365-2222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kkFz0zAQhTUMDA2Fv8DownDBRrYkSzpwCKEtnSlwAcptR5blRqltBcuaJv8emYT0xF60kr59h30PIVyQvEj1fpMXtOJZmSovCVE5obSs8t0TtDh9PEULojjLhFTsDL0IYUMIoVzJ5-isUILyUrAFaq-Htot2MBb7Fls9dnt8FyfcOzP62vlJYz_gaW1xr6c46smlayLN2nXN2vsG99H4oDushwaHfZhsGsWu7-Ng8WjD1g_BhpfoWau7YF8dz3P04_Li--pzdvPt6nq1vMkMJ7LKKl0VXJraska1taS1kqxuS2U4V7WtW8OVYoUwlRCNMdQK2jSElY1WLUuYpucoO-iGB7uNNWxH1-txD147OD7dp84C5xUpeeLf_Zf_5H4uwY930LkIaVukSPjbA74d_e9owwS9C8Z2nR6sjwEEpVJKwmfy9ZGMdW-bk_C_zSfgzRHQweiuHfVgXDhxZVlwJuQs9OHAPbjO7h91CMxJgA3MhsNsOMxJgL9JgB2sLpZz97gRl6zZneb1eA-VoILD7dcrYLcfL38J-QUY_QPMmLfq</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Sjögren, Y. M.</creator><creator>Tomicic, S.</creator><creator>Lundberg, A.</creator><creator>Böttcher, M. F.</creator><creator>Björkstén, B.</creator><creator>Sverremark-Ekström, E.</creator><creator>Jenmalm, M. C.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>200912</creationdate><title>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</title><author>Sjögren, Y. M. ; Tomicic, S. ; Lundberg, A. ; Böttcher, M. F. ; Björkstén, B. ; Sverremark-Ekström, E. ; Jenmalm, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5086-6a6158cbe4d9fb83b984bf29c559bebfc599417c677dcc3e73dd042da9f4f29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacteroides fragilis</topic><topic>Bacteroides fragilis - genetics</topic><topic>Bacteroides fragilis - immunology</topic><topic>Bacteroides fragilis - isolation & purification</topic><topic>bifidobacteria</topic><topic>Bifidobacterium - genetics</topic><topic>Bifidobacterium - immunology</topic><topic>Bifidobacterium - isolation & purification</topic><topic>Biological and medical sciences</topic><topic>Chemokine CCL4 - metabolism</topic><topic>Child, Preschool</topic><topic>Clostridium difficile</topic><topic>Clostridium difficile - genetics</topic><topic>Clostridium difficile - immunology</topic><topic>Clostridium difficile - isolation & purification</topic><topic>Feces - microbiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Gene Expression - genetics</topic><topic>Gene Expression - immunology</topic><topic>gut microbiota</topic><topic>Humans</topic><topic>Immune System - growth & development</topic><topic>Immune System - immunology</topic><topic>Immunity - immunology</topic><topic>Immunity, Mucosal - immunology</topic><topic>Immunoglobulin A, Secretory - immunology</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin-6 - metabolism</topic><topic>Interleukins - metabolism</topic><topic>Intestines - immunology</topic><topic>Intestines - microbiology</topic><topic>lactobacilli</topic><topic>Lactobacillus - genetics</topic><topic>Lactobacillus - immunology</topic><topic>Lactobacillus - isolation & purification</topic><topic>Leukocytes, Mononuclear - drug effects</topic><topic>Leukocytes, Mononuclear - immunology</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Metagenome - immunology</topic><topic>Phytohemagglutinins - pharmacology</topic><topic>Saliva - immunology</topic><topic>SIgA</topic><topic>TLR2</topic><topic>TLR4</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sjögren, Y. M.</creatorcontrib><creatorcontrib>Tomicic, S.</creatorcontrib><creatorcontrib>Lundberg, A.</creatorcontrib><creatorcontrib>Böttcher, M. F.</creatorcontrib><creatorcontrib>Björkstén, B.</creatorcontrib><creatorcontrib>Sverremark-Ekström, E.</creatorcontrib><creatorcontrib>Jenmalm, M. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Clinical and experimental allergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sjögren, Y. M.</au><au>Tomicic, S.</au><au>Lundberg, A.</au><au>Böttcher, M. F.</au><au>Björkstén, B.</au><au>Sverremark-Ekström, E.</au><au>Jenmalm, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses</atitle><jtitle>Clinical and experimental allergy</jtitle><addtitle>Clin Exp Allergy</addtitle><date>2009-12</date><risdate>2009</risdate><volume>39</volume><issue>12</issue><spage>1842</spage><epage>1851</epage><pages>1842-1851</pages><issn>0954-7894</issn><issn>1365-2222</issn><eissn>1365-2222</eissn><abstract>Summary
Introduction
Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear.
Objective
To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll‐like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)‐induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs).
Methods
Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real‐time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real‐time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex.
Results
The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS‐induced production of inflammatory cytokines and chemokines, e.g. IL‐6 and CCL4 (MIP‐1β), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples.
Conclusion
Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down‐regulate LPS responsiveness in infancy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19735274</pmid><doi>10.1111/j.1365-2222.2009.03326.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-7894 |
ispartof | Clinical and experimental allergy, 2009-12, Vol.39 (12), p.1842-1851 |
issn | 0954-7894 1365-2222 1365-2222 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_556025 |
source | MEDLINE; Wiley Online Library All Journals; SWEPUB Freely available online |
subjects | Bacteroides fragilis Bacteroides fragilis - genetics Bacteroides fragilis - immunology Bacteroides fragilis - isolation & purification bifidobacteria Bifidobacterium - genetics Bifidobacterium - immunology Bifidobacterium - isolation & purification Biological and medical sciences Chemokine CCL4 - metabolism Child, Preschool Clostridium difficile Clostridium difficile - genetics Clostridium difficile - immunology Clostridium difficile - isolation & purification Feces - microbiology Female Fundamental and applied biological sciences. Psychology Fundamental immunology Gene Expression - genetics Gene Expression - immunology gut microbiota Humans Immune System - growth & development Immune System - immunology Immunity - immunology Immunity, Mucosal - immunology Immunoglobulin A, Secretory - immunology Infant Infant, Newborn Interferon-gamma - metabolism Interleukin-6 - metabolism Interleukins - metabolism Intestines - immunology Intestines - microbiology lactobacilli Lactobacillus - genetics Lactobacillus - immunology Lactobacillus - isolation & purification Leukocytes, Mononuclear - drug effects Leukocytes, Mononuclear - immunology Leukocytes, Mononuclear - metabolism Lipopolysaccharides - pharmacology Longitudinal Studies Male MEDICIN MEDICINE Metagenome - immunology Phytohemagglutinins - pharmacology Saliva - immunology SIgA TLR2 TLR4 Toll-Like Receptor 4 - genetics Tumor Necrosis Factor-alpha - metabolism |
title | Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20early%20gut%20microbiota%20on%20the%20maturation%20of%20childhood%20mucosal%20and%20systemic%20immune%20responses&rft.jtitle=Clinical%20and%20experimental%20allergy&rft.au=Sj%C3%B6gren,%20Y.%20M.&rft.date=2009-12&rft.volume=39&rft.issue=12&rft.spage=1842&rft.epage=1851&rft.pages=1842-1851&rft.issn=0954-7894&rft.eissn=1365-2222&rft_id=info:doi/10.1111/j.1365-2222.2009.03326.x&rft_dat=%3Cproquest_swepu%3E733888051%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733888051&rft_id=info:pmid/19735274&rfr_iscdi=true |