Specificity of oxidation of linoleic acid homologs by plant lipoxygenases
The lipoxygenase-catalyzed oxidation of linoleic acid homologs was studied. While the linoleic acid oxidation by maize 9-lipoxygenase (9-LO) specifically produced (9S)-hydroperoxide, the dioxygenation of (11Z,14Z)-eicosadienoic (20:2) and (13Z,16Z)-docosadienoic (22:2) acids by the same enzyme lacke...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2009-08, Vol.74 (8), p.855-861 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lipoxygenase-catalyzed oxidation of linoleic acid homologs was studied. While the linoleic acid oxidation by maize 9-lipoxygenase (9-LO) specifically produced (9S)-hydroperoxide, the dioxygenation of (11Z,14Z)-eicosadienoic (20:2) and (13Z,16Z)-docosadienoic (22:2) acids by the same enzyme lacked regio- and stereospecificity. The oxidation of 20:2 and 22:2 by 9-LO afforded low yields of racemic 11-, 12-, 14-, and 15-hydroperoxides or 13- and 17-hydroperoxides, respectively. Soybean 13-lipoxygenase-1 (13-LO) specifically oxidized 20:2, 22:2, and linoleate into (ω6S)-hydroperoxides. Dioxygenation of (9Z,12Z)-hexadecadienoic acid (16:2) by both 9-LO and 13-LO occurred specifically, affording (9S)- and (13S)-hydroperoxides, respectively. The data are consistent with the “pocket theory of lipoxygenase catalysis” (i.e. with the penetration of a substrate into the active center with the methyl end first). Our findings also demonstrate that the distance between carboxyl group and double bonds substantially determines the positioning of substrates within the active site. |
---|---|
ISSN: | 0006-2979 1608-3040 1608-3040 |
DOI: | 10.1134/S0006297909080069 |