A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase
Pyranose 2-oxidase (P2O)5 catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF BIOLOGICAL CHEMISTRY 2010-03, Vol.285 (13), p.9697-9705 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9705 |
---|---|
container_issue | 13 |
container_start_page | 9697 |
container_title | JOURNAL OF BIOLOGICAL CHEMISTRY |
container_volume | 285 |
creator | Pitsawong, Warintra Sucharitakul, Jeerus Prongjit, Methinee Tan, Tien-Chye Spadiut, Oliver Haltrich, Dietmar Divne, Christina Chaiyen, Pimchai |
description | Pyranose 2-oxidase (P2O)5 catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization. |
doi_str_mv | 10.1074/jbc.M109.073247 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_553622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819550268</els_id><sourcerecordid>20089849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-55230a955c78304cb127f702d20f2492a42de281716f4fe5e3623c45fcd7798b3</originalsourceid><addsrcrecordid>eNp1kktvEzEURkcIRNPCmh34BzCpn_F4gxRCC5GKitQWsbMc-zpxm4wjezrQf4_D9EEX8caW7zn3SvZXVe8IHhMs-fH1wo6_E6zGWDLK5YtqRHDDaibIr5fVCGNKakVFc1Ad5nyNy-KKvK4OKMaNargaVWGKZrHNkHpwaGq70EOdQwfocpUgtqEFNM9ovtnG1Jm2Qz4m9Dl2K3RxuzQJmdah07XpQ4vO_wRnulCaoejRj7tk2pgB0fpfIcOb6pU36wxv7_ej6ur05HL2rT47_zqfTc9qOxGyq4WgDBslhJUNw9wuCJVeYuoo9pQrajh1QBsiycRzDwLYhDLLhbdOStUs2FFVD33zb9jeLvQ2hY1JdzqaoO-vbsoJtBBFpYVXe_ltiu5JehAJxZRj1bDiftzrfgk_pzqmpb7pVpo2TO7wTwNe2A04C22XzPr5xGeVNqz0MvZF54wSVRocDw1sijkn8I8uwXoXCF0CoXeB0EMgivH-_5GP_EMCCvBhALyJ2ixTyPrqgmLCMGnIRHLy9EBQfq0PkHS2AVoLLiSwnXYx7B3_F29b0Fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pitsawong, Warintra ; Sucharitakul, Jeerus ; Prongjit, Methinee ; Tan, Tien-Chye ; Spadiut, Oliver ; Haltrich, Dietmar ; Divne, Christina ; Chaiyen, Pimchai</creator><creatorcontrib>Pitsawong, Warintra ; Sucharitakul, Jeerus ; Prongjit, Methinee ; Tan, Tien-Chye ; Spadiut, Oliver ; Haltrich, Dietmar ; Divne, Christina ; Chaiyen, Pimchai</creatorcontrib><description>Pyranose 2-oxidase (P2O)5 catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.073247</identifier><identifier>PMID: 20089849</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry ; Biokemi ; Carbohydrate Dehydrogenases - chemistry ; Carbohydrates - chemistry ; Catalytic Domain ; Chemistry ; Crystallography, X-Ray - methods ; Electron Transfer ; Enzymes/Catalysis ; Enzymes/Flavin ; Enzymes/Kinetics ; Enzymes/Oxidase ; Enzymes/Oxidation-Reduction ; Enzymology ; Flavins - chemistry ; Galactose - chemistry ; Glucose - chemistry ; Hydrogen Bonding ; Hydrogen Peroxide - chemistry ; Kemi ; Kinetics ; Medicin och hälsovetenskap ; Molecular biology ; Molekylärbiologi ; Mutagenesis, Site-Directed ; NATURAL SCIENCES ; NATURVETENSKAP ; Oxygen - chemistry ; Temperature ; Threonine - chemistry ; Trametes - enzymology</subject><ispartof>JOURNAL OF BIOLOGICAL CHEMISTRY, 2010-03, Vol.285 (13), p.9697-9705</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-55230a955c78304cb127f702d20f2492a42de281716f4fe5e3623c45fcd7798b3</citedby><cites>FETCH-LOGICAL-c657t-55230a955c78304cb127f702d20f2492a42de281716f4fe5e3623c45fcd7798b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843219/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843219/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20089849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-28373$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:120240983$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitsawong, Warintra</creatorcontrib><creatorcontrib>Sucharitakul, Jeerus</creatorcontrib><creatorcontrib>Prongjit, Methinee</creatorcontrib><creatorcontrib>Tan, Tien-Chye</creatorcontrib><creatorcontrib>Spadiut, Oliver</creatorcontrib><creatorcontrib>Haltrich, Dietmar</creatorcontrib><creatorcontrib>Divne, Christina</creatorcontrib><creatorcontrib>Chaiyen, Pimchai</creatorcontrib><title>A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase</title><title>JOURNAL OF BIOLOGICAL CHEMISTRY</title><addtitle>J Biol Chem</addtitle><description>Pyranose 2-oxidase (P2O)5 catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization.</description><subject>Biochemistry</subject><subject>Biokemi</subject><subject>Carbohydrate Dehydrogenases - chemistry</subject><subject>Carbohydrates - chemistry</subject><subject>Catalytic Domain</subject><subject>Chemistry</subject><subject>Crystallography, X-Ray - methods</subject><subject>Electron Transfer</subject><subject>Enzymes/Catalysis</subject><subject>Enzymes/Flavin</subject><subject>Enzymes/Kinetics</subject><subject>Enzymes/Oxidase</subject><subject>Enzymes/Oxidation-Reduction</subject><subject>Enzymology</subject><subject>Flavins - chemistry</subject><subject>Galactose - chemistry</subject><subject>Glucose - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Kemi</subject><subject>Kinetics</subject><subject>Medicin och hälsovetenskap</subject><subject>Molecular biology</subject><subject>Molekylärbiologi</subject><subject>Mutagenesis, Site-Directed</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Oxygen - chemistry</subject><subject>Temperature</subject><subject>Threonine - chemistry</subject><subject>Trametes - enzymology</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kktvEzEURkcIRNPCmh34BzCpn_F4gxRCC5GKitQWsbMc-zpxm4wjezrQf4_D9EEX8caW7zn3SvZXVe8IHhMs-fH1wo6_E6zGWDLK5YtqRHDDaibIr5fVCGNKakVFc1Ad5nyNy-KKvK4OKMaNargaVWGKZrHNkHpwaGq70EOdQwfocpUgtqEFNM9ovtnG1Jm2Qz4m9Dl2K3RxuzQJmdah07XpQ4vO_wRnulCaoejRj7tk2pgB0fpfIcOb6pU36wxv7_ej6ur05HL2rT47_zqfTc9qOxGyq4WgDBslhJUNw9wuCJVeYuoo9pQrajh1QBsiycRzDwLYhDLLhbdOStUs2FFVD33zb9jeLvQ2hY1JdzqaoO-vbsoJtBBFpYVXe_ltiu5JehAJxZRj1bDiftzrfgk_pzqmpb7pVpo2TO7wTwNe2A04C22XzPr5xGeVNqz0MvZF54wSVRocDw1sijkn8I8uwXoXCF0CoXeB0EMgivH-_5GP_EMCCvBhALyJ2ixTyPrqgmLCMGnIRHLy9EBQfq0PkHS2AVoLLiSwnXYx7B3_F29b0Fg</recordid><startdate>20100326</startdate><enddate>20100326</enddate><creator>Pitsawong, Warintra</creator><creator>Sucharitakul, Jeerus</creator><creator>Prongjit, Methinee</creator><creator>Tan, Tien-Chye</creator><creator>Spadiut, Oliver</creator><creator>Haltrich, Dietmar</creator><creator>Divne, Christina</creator><creator>Chaiyen, Pimchai</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope></search><sort><creationdate>20100326</creationdate><title>A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase</title><author>Pitsawong, Warintra ; Sucharitakul, Jeerus ; Prongjit, Methinee ; Tan, Tien-Chye ; Spadiut, Oliver ; Haltrich, Dietmar ; Divne, Christina ; Chaiyen, Pimchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-55230a955c78304cb127f702d20f2492a42de281716f4fe5e3623c45fcd7798b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biochemistry</topic><topic>Biokemi</topic><topic>Carbohydrate Dehydrogenases - chemistry</topic><topic>Carbohydrates - chemistry</topic><topic>Catalytic Domain</topic><topic>Chemistry</topic><topic>Crystallography, X-Ray - methods</topic><topic>Electron Transfer</topic><topic>Enzymes/Catalysis</topic><topic>Enzymes/Flavin</topic><topic>Enzymes/Kinetics</topic><topic>Enzymes/Oxidase</topic><topic>Enzymes/Oxidation-Reduction</topic><topic>Enzymology</topic><topic>Flavins - chemistry</topic><topic>Galactose - chemistry</topic><topic>Glucose - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Kemi</topic><topic>Kinetics</topic><topic>Medicin och hälsovetenskap</topic><topic>Molecular biology</topic><topic>Molekylärbiologi</topic><topic>Mutagenesis, Site-Directed</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Oxygen - chemistry</topic><topic>Temperature</topic><topic>Threonine - chemistry</topic><topic>Trametes - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitsawong, Warintra</creatorcontrib><creatorcontrib>Sucharitakul, Jeerus</creatorcontrib><creatorcontrib>Prongjit, Methinee</creatorcontrib><creatorcontrib>Tan, Tien-Chye</creatorcontrib><creatorcontrib>Spadiut, Oliver</creatorcontrib><creatorcontrib>Haltrich, Dietmar</creatorcontrib><creatorcontrib>Divne, Christina</creatorcontrib><creatorcontrib>Chaiyen, Pimchai</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitsawong, Warintra</au><au>Sucharitakul, Jeerus</au><au>Prongjit, Methinee</au><au>Tan, Tien-Chye</au><au>Spadiut, Oliver</au><au>Haltrich, Dietmar</au><au>Divne, Christina</au><au>Chaiyen, Pimchai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase</atitle><jtitle>JOURNAL OF BIOLOGICAL CHEMISTRY</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-26</date><risdate>2010</risdate><volume>285</volume><issue>13</issue><spage>9697</spage><epage>9705</epage><pages>9697-9705</pages><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Pyranose 2-oxidase (P2O)5 catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20089849</pmid><doi>10.1074/jbc.M109.073247</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | JOURNAL OF BIOLOGICAL CHEMISTRY, 2010-03, Vol.285 (13), p.9697-9705 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_553622 |
source | MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Biochemistry Biokemi Carbohydrate Dehydrogenases - chemistry Carbohydrates - chemistry Catalytic Domain Chemistry Crystallography, X-Ray - methods Electron Transfer Enzymes/Catalysis Enzymes/Flavin Enzymes/Kinetics Enzymes/Oxidase Enzymes/Oxidation-Reduction Enzymology Flavins - chemistry Galactose - chemistry Glucose - chemistry Hydrogen Bonding Hydrogen Peroxide - chemistry Kemi Kinetics Medicin och hälsovetenskap Molecular biology Molekylärbiologi Mutagenesis, Site-Directed NATURAL SCIENCES NATURVETENSKAP Oxygen - chemistry Temperature Threonine - chemistry Trametes - enzymology |
title | A Conserved Active-site Threonine Is Important for Both Sugar and Flavin Oxidations of Pyranose 2-Oxidase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Conserved%20Active-site%20Threonine%20Is%20Important%20for%20Both%20Sugar%20and%20Flavin%20Oxidations%20of%20Pyranose%202-Oxidase&rft.jtitle=JOURNAL%20OF%20BIOLOGICAL%20CHEMISTRY&rft.au=Pitsawong,%20Warintra&rft.date=2010-03-26&rft.volume=285&rft.issue=13&rft.spage=9697&rft.epage=9705&rft.pages=9697-9705&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.073247&rft_dat=%3Cpubmed_swepu%3E20089849%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20089849&rft_els_id=S0021925819550268&rfr_iscdi=true |