Fourier transform ion cyclotron resonance mass spectrometer with coaxial multi-electrode cell ('O-trap'): first experimental demonstration
The conceptual design of the O‐trap Fourier transform ion cyclotron resonance (FT‐ICR) cell addresses the speed of analysis issue in FT‐ICR mass spectrometry. The concept of the O‐trap includes separating the functions of ion excitation and detection between two different FT‐ICR cell compartments. T...
Gespeichert in:
Veröffentlicht in: | Rapid communications in mass spectrometry 2010-07, Vol.24 (14), p.1931-1940 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conceptual design of the O‐trap Fourier transform ion cyclotron resonance (FT‐ICR) cell addresses the speed of analysis issue in FT‐ICR mass spectrometry. The concept of the O‐trap includes separating the functions of ion excitation and detection between two different FT‐ICR cell compartments. The detection compartment of the O‐trap implements additional internal coaxial electrodes around which ions with excited cyclotron motion revolve. The expected benefits are higher resolving power and the lesser effect of the space charge. In this work we present the first experimental demonstration of the O‐trap cell and its features, including the high ion transfer efficiency between two distinct compartments of an ICR cell after excitation of the coherent cyclotron motion. We demonstrate that utilization of the multiple‐electrode detection in the O‐trap provides mass resolving power enhancement (achieved over a certain time) equal to the order of the frequency multiplication. In an O‐trap installed in a 5 T desk‐top cryogen‐free superconducting magnet, the resolving power of R = 80 000 was achieved for bradykinin [M + 2H]2+ (m/z 531; equivalent to 100 000 when recalculated for m/z 400) in 0.2 s analysis time (transient length), and R = 300 000 at m/z 531 for a 1 s transient. In both cases, detection on the third multiple of the cyclotron frequency was implemented. In terms of the acquisition speed at fixed resolving power, such performance is equivalent to conventional FT‐ICR detection using a 15 T magnet. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0951-4198 1097-0231 1097-0231 |
DOI: | 10.1002/rcm.4593 |