Sample selection and validity of exposure–disease association estimates in cohort studies

BackgroundParticipants in cohort studies are frequently selected from restricted source populations. It has been recognised that such restriction may affect the study validity.ObjectivesTo assess the bias that may arise when analyses involve data from cohorts based on restricted source populations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of epidemiology and community health (1979) 2011-05, Vol.65 (5), p.407-411
Hauptverfasser: Pizzi, Costanza, De Stavola, Bianca, Merletti, Franco, Bellocco, Rino, dos Santos Silva, Isabel, Pearce, Neil, Richiardi, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 5
container_start_page 407
container_title Journal of epidemiology and community health (1979)
container_volume 65
creator Pizzi, Costanza
De Stavola, Bianca
Merletti, Franco
Bellocco, Rino
dos Santos Silva, Isabel
Pearce, Neil
Richiardi, Lorenzo
description BackgroundParticipants in cohort studies are frequently selected from restricted source populations. It has been recognised that such restriction may affect the study validity.ObjectivesTo assess the bias that may arise when analyses involve data from cohorts based on restricted source populations, an area little studied in quantitative terms.MethodsMonte Carlo simulations were used, based on a setting where the exposure and one risk factor for the outcome, which are not associated in the general population, influence selection into the cohort. All the parameters involved in the simulations (ie, prevalence and effects of exposure and risk factor on both the selection and outcome process, selection prevalence, baseline outcome incidence rate, and sample size) were allowed to vary to reflect real life settings.ResultsThe simulations show that when the exposure and risk factor are strongly associated with selection (ORs of 4 or 0.25) and the unmeasured risk factor is associated with a disease HR of 4, the bias in the estimated log HR for the exposure–disease association is ±0.15. When these associations decrease to values more commonly seen in epidemiological studies (eg, ORs and HRs of 2 or 0.5), the bias in the log HR drops to just ±0.02.ConclusionsUsing a restricted source population for a cohort study will, under a range of sensible scenarios, produce only relatively weak bias in estimates of the exposure–disease associations.
doi_str_mv 10.1136/jech.2009.107185
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_548690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41150994</jstor_id><sourcerecordid>41150994</sourcerecordid><originalsourceid>FETCH-LOGICAL-b578t-5ebb570338a8b68c845e013e3371bc25b57044ab33396a89dd35ba839a4e52ef3</originalsourceid><addsrcrecordid>eNqFkl1r1EAUhoModq3ee6MEihSRrPOZmbksq7XCooIfCF4Mk-QsO9tsZs1JanvX_-A_9Jc4MdtdFKRXc5jzvIfz8SbJY0qmlPL85QrK5ZQRYqaUKKrlnWRChSIZU1zfTSaECp4RIr8eJA8QVySGipn7yQEjWlPC2CT59tGtNzWkCDWUnQ9N6poqvXC1r3x3lYZFCpebgH0Lv65_Vh7BIaQOMZTe_cEBO792HWDqm7QMy9B2KXZ95QEfJvcWrkZ4tH0Pk8-nrz_NzrL5-zdvZyfzrJBKd5mEIgaEc-10ketSCwmEcuBc0aJkckgK4QrOucmdNlXFZeE0N06AZLDgh0k21sUfsOkLu2ljR-2VDc7b7dd5jMBKoXNDIm_-y2_aUO1FN0LKGGeGSxa1z0ft0tV_Cc9O5nb4izvWUuXqgkb2eGRj0e99XJRdeyyhrl0DoUdr4lhKcsZuJXUeD8Y0Gcijf8hV6NsmrtdSpUw8PNM8UmSkyjYgtrDYtUqJHZxjB-fYwTl2dE6UPN0W7os1VDvBjVUi8GwLOCxdvWhdU3rcc4KInPBhu09GboVdaHd5Qakkxoj9tTx2cLnLu_bc5oorad99mdlTQzWb5R_sq8i_GPlivbp9jN-W_fK6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779273283</pqid></control><display><type>article</type><title>Sample selection and validity of exposure–disease association estimates in cohort studies</title><source>MEDLINE</source><source>BMJ Journals - NESLi2</source><source>SWEPUB Freely available online</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Pizzi, Costanza ; De Stavola, Bianca ; Merletti, Franco ; Bellocco, Rino ; dos Santos Silva, Isabel ; Pearce, Neil ; Richiardi, Lorenzo</creator><creatorcontrib>Pizzi, Costanza ; De Stavola, Bianca ; Merletti, Franco ; Bellocco, Rino ; dos Santos Silva, Isabel ; Pearce, Neil ; Richiardi, Lorenzo</creatorcontrib><description>BackgroundParticipants in cohort studies are frequently selected from restricted source populations. It has been recognised that such restriction may affect the study validity.ObjectivesTo assess the bias that may arise when analyses involve data from cohorts based on restricted source populations, an area little studied in quantitative terms.MethodsMonte Carlo simulations were used, based on a setting where the exposure and one risk factor for the outcome, which are not associated in the general population, influence selection into the cohort. All the parameters involved in the simulations (ie, prevalence and effects of exposure and risk factor on both the selection and outcome process, selection prevalence, baseline outcome incidence rate, and sample size) were allowed to vary to reflect real life settings.ResultsThe simulations show that when the exposure and risk factor are strongly associated with selection (ORs of 4 or 0.25) and the unmeasured risk factor is associated with a disease HR of 4, the bias in the estimated log HR for the exposure–disease association is ±0.15. When these associations decrease to values more commonly seen in epidemiological studies (eg, ORs and HRs of 2 or 0.5), the bias in the log HR drops to just ±0.02.ConclusionsUsing a restricted source population for a cohort study will, under a range of sensible scenarios, produce only relatively weak bias in estimates of the exposure–disease associations.</description><identifier>ISSN: 0143-005X</identifier><identifier>ISSN: 1470-2738</identifier><identifier>EISSN: 1470-2738</identifier><identifier>DOI: 10.1136/jech.2009.107185</identifier><identifier>PMID: 20881022</identifier><identifier>CODEN: JECHDR</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Bias ; BIAS ME ; Biological and medical sciences ; Breast cancer ; Cancer screening ; Cohort Studies ; confounding ; Data processing ; Directed Acyclical Graphs ; Disease risk ; Environmental Exposure - adverse effects ; Environmental Exposure - statistics &amp; numerical data ; Epidemiologic Methods ; Epidemiology ; epidemiology ME ; Estimates ; Estimation bias ; Exposure ; Family medical history ; General aspects ; Health risk assessment ; Humans ; Incidence ; Logistic Models ; Medical sciences ; Medicin och hälsovetenskap ; Miscellaneous ; Monte Carlo Method ; Monte Carlo simulation ; Monte Carlo Simulations ; Obesity ; Population ; Predisposing factors ; Prevalence ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Research universities ; Restrictions ; Risk Assessment - methods ; Risk Factors ; Sample Size ; Sampling methods ; Selection Bias ; Simulation ; Studies ; Theory and methods ; Validity</subject><ispartof>Journal of epidemiology and community health (1979), 2011-05, Vol.65 (5), p.407-411</ispartof><rights>2011, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</rights><rights>Copyright: © 2011 BMJ Publishing Group</rights><rights>2015 INIST-CNRS</rights><rights>Copyright: 2011 (c) 2011, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b578t-5ebb570338a8b68c845e013e3371bc25b57044ab33396a89dd35ba839a4e52ef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jech.bmj.com/content/65/5/407.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttps://jech.bmj.com/content/65/5/407.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,230,314,552,780,784,803,885,3196,23571,27924,27925,58017,58250,77600,77631</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24046030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20881022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00585767$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:122329352$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pizzi, Costanza</creatorcontrib><creatorcontrib>De Stavola, Bianca</creatorcontrib><creatorcontrib>Merletti, Franco</creatorcontrib><creatorcontrib>Bellocco, Rino</creatorcontrib><creatorcontrib>dos Santos Silva, Isabel</creatorcontrib><creatorcontrib>Pearce, Neil</creatorcontrib><creatorcontrib>Richiardi, Lorenzo</creatorcontrib><title>Sample selection and validity of exposure–disease association estimates in cohort studies</title><title>Journal of epidemiology and community health (1979)</title><addtitle>J Epidemiol Community Health</addtitle><description>BackgroundParticipants in cohort studies are frequently selected from restricted source populations. It has been recognised that such restriction may affect the study validity.ObjectivesTo assess the bias that may arise when analyses involve data from cohorts based on restricted source populations, an area little studied in quantitative terms.MethodsMonte Carlo simulations were used, based on a setting where the exposure and one risk factor for the outcome, which are not associated in the general population, influence selection into the cohort. All the parameters involved in the simulations (ie, prevalence and effects of exposure and risk factor on both the selection and outcome process, selection prevalence, baseline outcome incidence rate, and sample size) were allowed to vary to reflect real life settings.ResultsThe simulations show that when the exposure and risk factor are strongly associated with selection (ORs of 4 or 0.25) and the unmeasured risk factor is associated with a disease HR of 4, the bias in the estimated log HR for the exposure–disease association is ±0.15. When these associations decrease to values more commonly seen in epidemiological studies (eg, ORs and HRs of 2 or 0.5), the bias in the log HR drops to just ±0.02.ConclusionsUsing a restricted source population for a cohort study will, under a range of sensible scenarios, produce only relatively weak bias in estimates of the exposure–disease associations.</description><subject>Bias</subject><subject>BIAS ME</subject><subject>Biological and medical sciences</subject><subject>Breast cancer</subject><subject>Cancer screening</subject><subject>Cohort Studies</subject><subject>confounding</subject><subject>Data processing</subject><subject>Directed Acyclical Graphs</subject><subject>Disease risk</subject><subject>Environmental Exposure - adverse effects</subject><subject>Environmental Exposure - statistics &amp; numerical data</subject><subject>Epidemiologic Methods</subject><subject>Epidemiology</subject><subject>epidemiology ME</subject><subject>Estimates</subject><subject>Estimation bias</subject><subject>Exposure</subject><subject>Family medical history</subject><subject>General aspects</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Incidence</subject><subject>Logistic Models</subject><subject>Medical sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Miscellaneous</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Monte Carlo Simulations</subject><subject>Obesity</subject><subject>Population</subject><subject>Predisposing factors</subject><subject>Prevalence</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Research universities</subject><subject>Restrictions</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>Sample Size</subject><subject>Sampling methods</subject><subject>Selection Bias</subject><subject>Simulation</subject><subject>Studies</subject><subject>Theory and methods</subject><subject>Validity</subject><issn>0143-005X</issn><issn>1470-2738</issn><issn>1470-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNqFkl1r1EAUhoModq3ee6MEihSRrPOZmbksq7XCooIfCF4Mk-QsO9tsZs1JanvX_-A_9Jc4MdtdFKRXc5jzvIfz8SbJY0qmlPL85QrK5ZQRYqaUKKrlnWRChSIZU1zfTSaECp4RIr8eJA8QVySGipn7yQEjWlPC2CT59tGtNzWkCDWUnQ9N6poqvXC1r3x3lYZFCpebgH0Lv65_Vh7BIaQOMZTe_cEBO792HWDqm7QMy9B2KXZ95QEfJvcWrkZ4tH0Pk8-nrz_NzrL5-zdvZyfzrJBKd5mEIgaEc-10ketSCwmEcuBc0aJkckgK4QrOucmdNlXFZeE0N06AZLDgh0k21sUfsOkLu2ljR-2VDc7b7dd5jMBKoXNDIm_-y2_aUO1FN0LKGGeGSxa1z0ft0tV_Cc9O5nb4izvWUuXqgkb2eGRj0e99XJRdeyyhrl0DoUdr4lhKcsZuJXUeD8Y0Gcijf8hV6NsmrtdSpUw8PNM8UmSkyjYgtrDYtUqJHZxjB-fYwTl2dE6UPN0W7os1VDvBjVUi8GwLOCxdvWhdU3rcc4KInPBhu09GboVdaHd5Qakkxoj9tTx2cLnLu_bc5oorad99mdlTQzWb5R_sq8i_GPlivbp9jN-W_fK6</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Pizzi, Costanza</creator><creator>De Stavola, Bianca</creator><creator>Merletti, Franco</creator><creator>Bellocco, Rino</creator><creator>dos Santos Silva, Isabel</creator><creator>Pearce, Neil</creator><creator>Richiardi, Lorenzo</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ Publishing Group LTD</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>7U7</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20110501</creationdate><title>Sample selection and validity of exposure–disease association estimates in cohort studies</title><author>Pizzi, Costanza ; De Stavola, Bianca ; Merletti, Franco ; Bellocco, Rino ; dos Santos Silva, Isabel ; Pearce, Neil ; Richiardi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b578t-5ebb570338a8b68c845e013e3371bc25b57044ab33396a89dd35ba839a4e52ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bias</topic><topic>BIAS ME</topic><topic>Biological and medical sciences</topic><topic>Breast cancer</topic><topic>Cancer screening</topic><topic>Cohort Studies</topic><topic>confounding</topic><topic>Data processing</topic><topic>Directed Acyclical Graphs</topic><topic>Disease risk</topic><topic>Environmental Exposure - adverse effects</topic><topic>Environmental Exposure - statistics &amp; numerical data</topic><topic>Epidemiologic Methods</topic><topic>Epidemiology</topic><topic>epidemiology ME</topic><topic>Estimates</topic><topic>Estimation bias</topic><topic>Exposure</topic><topic>Family medical history</topic><topic>General aspects</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Incidence</topic><topic>Logistic Models</topic><topic>Medical sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Miscellaneous</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Monte Carlo Simulations</topic><topic>Obesity</topic><topic>Population</topic><topic>Predisposing factors</topic><topic>Prevalence</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Research universities</topic><topic>Restrictions</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>Sample Size</topic><topic>Sampling methods</topic><topic>Selection Bias</topic><topic>Simulation</topic><topic>Studies</topic><topic>Theory and methods</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pizzi, Costanza</creatorcontrib><creatorcontrib>De Stavola, Bianca</creatorcontrib><creatorcontrib>Merletti, Franco</creatorcontrib><creatorcontrib>Bellocco, Rino</creatorcontrib><creatorcontrib>dos Santos Silva, Isabel</creatorcontrib><creatorcontrib>Pearce, Neil</creatorcontrib><creatorcontrib>Richiardi, Lorenzo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Journal of epidemiology and community health (1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pizzi, Costanza</au><au>De Stavola, Bianca</au><au>Merletti, Franco</au><au>Bellocco, Rino</au><au>dos Santos Silva, Isabel</au><au>Pearce, Neil</au><au>Richiardi, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample selection and validity of exposure–disease association estimates in cohort studies</atitle><jtitle>Journal of epidemiology and community health (1979)</jtitle><addtitle>J Epidemiol Community Health</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>65</volume><issue>5</issue><spage>407</spage><epage>411</epage><pages>407-411</pages><issn>0143-005X</issn><issn>1470-2738</issn><eissn>1470-2738</eissn><coden>JECHDR</coden><abstract>BackgroundParticipants in cohort studies are frequently selected from restricted source populations. It has been recognised that such restriction may affect the study validity.ObjectivesTo assess the bias that may arise when analyses involve data from cohorts based on restricted source populations, an area little studied in quantitative terms.MethodsMonte Carlo simulations were used, based on a setting where the exposure and one risk factor for the outcome, which are not associated in the general population, influence selection into the cohort. All the parameters involved in the simulations (ie, prevalence and effects of exposure and risk factor on both the selection and outcome process, selection prevalence, baseline outcome incidence rate, and sample size) were allowed to vary to reflect real life settings.ResultsThe simulations show that when the exposure and risk factor are strongly associated with selection (ORs of 4 or 0.25) and the unmeasured risk factor is associated with a disease HR of 4, the bias in the estimated log HR for the exposure–disease association is ±0.15. When these associations decrease to values more commonly seen in epidemiological studies (eg, ORs and HRs of 2 or 0.5), the bias in the log HR drops to just ±0.02.ConclusionsUsing a restricted source population for a cohort study will, under a range of sensible scenarios, produce only relatively weak bias in estimates of the exposure–disease associations.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>20881022</pmid><doi>10.1136/jech.2009.107185</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-005X
ispartof Journal of epidemiology and community health (1979), 2011-05, Vol.65 (5), p.407-411
issn 0143-005X
1470-2738
1470-2738
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_548690
source MEDLINE; BMJ Journals - NESLi2; SWEPUB Freely available online; JSTOR Archive Collection A-Z Listing
subjects Bias
BIAS ME
Biological and medical sciences
Breast cancer
Cancer screening
Cohort Studies
confounding
Data processing
Directed Acyclical Graphs
Disease risk
Environmental Exposure - adverse effects
Environmental Exposure - statistics & numerical data
Epidemiologic Methods
Epidemiology
epidemiology ME
Estimates
Estimation bias
Exposure
Family medical history
General aspects
Health risk assessment
Humans
Incidence
Logistic Models
Medical sciences
Medicin och hälsovetenskap
Miscellaneous
Monte Carlo Method
Monte Carlo simulation
Monte Carlo Simulations
Obesity
Population
Predisposing factors
Prevalence
Public health. Hygiene
Public health. Hygiene-occupational medicine
Research universities
Restrictions
Risk Assessment - methods
Risk Factors
Sample Size
Sampling methods
Selection Bias
Simulation
Studies
Theory and methods
Validity
title Sample selection and validity of exposure–disease association estimates in cohort studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20selection%20and%20validity%20of%20exposure%E2%80%93disease%20association%20estimates%20in%20cohort%20studies&rft.jtitle=Journal%20of%20epidemiology%20and%20community%20health%20(1979)&rft.au=Pizzi,%20Costanza&rft.date=2011-05-01&rft.volume=65&rft.issue=5&rft.spage=407&rft.epage=411&rft.pages=407-411&rft.issn=0143-005X&rft.eissn=1470-2738&rft.coden=JECHDR&rft_id=info:doi/10.1136/jech.2009.107185&rft_dat=%3Cjstor_swepu%3E41150994%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779273283&rft_id=info:pmid/20881022&rft_jstor_id=41150994&rfr_iscdi=true