High-resolution 3D X-ray imaging of intracranial nitinol stents

Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2012-02, Vol.54 (2), p.155-162
Hauptverfasser: Snoeren, Rudolph M., Söderman, Michael, Kroon, Johannes N., Roijers, Ruben B., de With, Peter H. N., Babic, Drazenko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 155
container_title Neuroradiology
container_volume 54
creator Snoeren, Rudolph M.
Söderman, Michael
Kroon, Johannes N.
Roijers, Ruben B.
de With, Peter H. N.
Babic, Drazenko
description Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations.
doi_str_mv 10.1007/s00234-011-0839-1
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_546050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>917162845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-260caac86c20975d65b0d1073c46e96c22d9385502ff77fcc563a72bfd13f96d3</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMo9nr1B7iRQRBX0XOSSTKzUaRqKxTcKLgLuZnMNHVuUpMZpf--Ge7YWkFcJZz3OZ8vIU8RXiGAep0BGK8pIFJoeEvxHtlgzRnFlsF9silyQ3lbwxF5lPMFAHDF1UNyxJBzlIAb8vbUD-c0uRzHefIxVPx99Y0mc1X5vRl8GKrYVz5MydhkgjdjFfzkQxyrPLkw5cfkQW_G7J6s75Z8_fjhy_EpPft88un43Rm1ktcTZRKsMbaRlkGrRCfFDjoExW0tXVuirGt5IwSwvleqt1ZIbhTb9R3yvpUd3xJ6qJt_uct5py9TmS9d6Wi8XkPfy89pUUsQUPg3B74oe9dZt6ww3km7qwR_rof4U3MmsS5H3JKXa4EUf8wuT3rvs3XjaIKLc9Ytky00rIb_k6hQsqYWhXz-F3kR5xTK3QokC4W4QHiAbIo5J9ffDI2gF9v1wXZdbNeL7RpLzrM_t73J-O1zAV6sgMnWjH3x0vp8ywmhJGfL1mw9c5HC4NLthP_ufg2OtcQh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916716115</pqid></control><display><type>article</type><title>High-resolution 3D X-ray imaging of intracranial nitinol stents</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Snoeren, Rudolph M. ; Söderman, Michael ; Kroon, Johannes N. ; Roijers, Ruben B. ; de With, Peter H. N. ; Babic, Drazenko</creator><creatorcontrib>Snoeren, Rudolph M. ; Söderman, Michael ; Kroon, Johannes N. ; Roijers, Ruben B. ; de With, Peter H. N. ; Babic, Drazenko</creatorcontrib><description>Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-011-0839-1</identifier><identifier>PMID: 21331601</identifier><identifier>CODEN: NRDYAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>3-D graphics ; Alloys ; Biological and medical sciences ; Computed tomography ; Electrocardiography. Vectocardiography ; Electrodiagnosis. Electric activity recording ; Head ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Implants ; Interventional Neuroradiology ; Intracranial Aneurysm - diagnostic imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Iodine ; Ionizing radiation ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Nervous system ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Phantoms, Imaging ; Radiation Dosage ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiographic Image Interpretation, Computer-Assisted ; Radiology ; spatial discrimination ; Stents ; Stroke ; Tomography, X-Ray Computed ; X-Rays</subject><ispartof>Neuroradiology, 2012-02, Vol.54 (2), p.155-162</ispartof><rights>The Author(s) 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-260caac86c20975d65b0d1073c46e96c22d9385502ff77fcc563a72bfd13f96d3</citedby><cites>FETCH-LOGICAL-c634t-260caac86c20975d65b0d1073c46e96c22d9385502ff77fcc563a72bfd13f96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-011-0839-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-011-0839-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25576324$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21331601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:123951377$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Snoeren, Rudolph M.</creatorcontrib><creatorcontrib>Söderman, Michael</creatorcontrib><creatorcontrib>Kroon, Johannes N.</creatorcontrib><creatorcontrib>Roijers, Ruben B.</creatorcontrib><creatorcontrib>de With, Peter H. N.</creatorcontrib><creatorcontrib>Babic, Drazenko</creatorcontrib><title>High-resolution 3D X-ray imaging of intracranial nitinol stents</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations.</description><subject>3-D graphics</subject><subject>Alloys</subject><subject>Biological and medical sciences</subject><subject>Computed tomography</subject><subject>Electrocardiography. Vectocardiography</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Head</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Implants</subject><subject>Interventional Neuroradiology</subject><subject>Intracranial Aneurysm - diagnostic imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Iodine</subject><subject>Ionizing radiation</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Phantoms, Imaging</subject><subject>Radiation Dosage</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Radiology</subject><subject>spatial discrimination</subject><subject>Stents</subject><subject>Stroke</subject><subject>Tomography, X-Ray Computed</subject><subject>X-Rays</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqFkU1rFTEUhoMo9nr1B7iRQRBX0XOSSTKzUaRqKxTcKLgLuZnMNHVuUpMZpf--Ge7YWkFcJZz3OZ8vIU8RXiGAep0BGK8pIFJoeEvxHtlgzRnFlsF9silyQ3lbwxF5lPMFAHDF1UNyxJBzlIAb8vbUD-c0uRzHefIxVPx99Y0mc1X5vRl8GKrYVz5MydhkgjdjFfzkQxyrPLkw5cfkQW_G7J6s75Z8_fjhy_EpPft88un43Rm1ktcTZRKsMbaRlkGrRCfFDjoExW0tXVuirGt5IwSwvleqt1ZIbhTb9R3yvpUd3xJ6qJt_uct5py9TmS9d6Wi8XkPfy89pUUsQUPg3B74oe9dZt6ww3km7qwR_rof4U3MmsS5H3JKXa4EUf8wuT3rvs3XjaIKLc9Ytky00rIb_k6hQsqYWhXz-F3kR5xTK3QokC4W4QHiAbIo5J9ffDI2gF9v1wXZdbNeL7RpLzrM_t73J-O1zAV6sgMnWjH3x0vp8ywmhJGfL1mw9c5HC4NLthP_ufg2OtcQh</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Snoeren, Rudolph M.</creator><creator>Söderman, Michael</creator><creator>Kroon, Johannes N.</creator><creator>Roijers, Ruben B.</creator><creator>de With, Peter H. N.</creator><creator>Babic, Drazenko</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20120201</creationdate><title>High-resolution 3D X-ray imaging of intracranial nitinol stents</title><author>Snoeren, Rudolph M. ; Söderman, Michael ; Kroon, Johannes N. ; Roijers, Ruben B. ; de With, Peter H. N. ; Babic, Drazenko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-260caac86c20975d65b0d1073c46e96c22d9385502ff77fcc563a72bfd13f96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D graphics</topic><topic>Alloys</topic><topic>Biological and medical sciences</topic><topic>Computed tomography</topic><topic>Electrocardiography. Vectocardiography</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Head</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Implants</topic><topic>Interventional Neuroradiology</topic><topic>Intracranial Aneurysm - diagnostic imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Iodine</topic><topic>Ionizing radiation</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Phantoms, Imaging</topic><topic>Radiation Dosage</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Radiology</topic><topic>spatial discrimination</topic><topic>Stents</topic><topic>Stroke</topic><topic>Tomography, X-Ray Computed</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snoeren, Rudolph M.</creatorcontrib><creatorcontrib>Söderman, Michael</creatorcontrib><creatorcontrib>Kroon, Johannes N.</creatorcontrib><creatorcontrib>Roijers, Ruben B.</creatorcontrib><creatorcontrib>de With, Peter H. N.</creatorcontrib><creatorcontrib>Babic, Drazenko</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snoeren, Rudolph M.</au><au>Söderman, Michael</au><au>Kroon, Johannes N.</au><au>Roijers, Ruben B.</au><au>de With, Peter H. N.</au><au>Babic, Drazenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution 3D X-ray imaging of intracranial nitinol stents</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>54</volume><issue>2</issue><spage>155</spage><epage>162</epage><pages>155-162</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><coden>NRDYAB</coden><abstract>Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21331601</pmid><doi>10.1007/s00234-011-0839-1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3940
ispartof Neuroradiology, 2012-02, Vol.54 (2), p.155-162
issn 0028-3940
1432-1920
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_546050
source MEDLINE; SWEPUB Freely available online; SpringerLink Journals - AutoHoldings
subjects 3-D graphics
Alloys
Biological and medical sciences
Computed tomography
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Head
Humans
Imaging
Imaging, Three-Dimensional - methods
Implants
Interventional Neuroradiology
Intracranial Aneurysm - diagnostic imaging
Investigative techniques, diagnostic techniques (general aspects)
Iodine
Ionizing radiation
Medical sciences
Medicine
Medicine & Public Health
Nervous system
Neuroimaging
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Phantoms, Imaging
Radiation Dosage
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiographic Image Interpretation, Computer-Assisted
Radiology
spatial discrimination
Stents
Stroke
Tomography, X-Ray Computed
X-Rays
title High-resolution 3D X-ray imaging of intracranial nitinol stents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%203D%20X-ray%20imaging%20of%20intracranial%20nitinol%20stents&rft.jtitle=Neuroradiology&rft.au=Snoeren,%20Rudolph%20M.&rft.date=2012-02-01&rft.volume=54&rft.issue=2&rft.spage=155&rft.epage=162&rft.pages=155-162&rft.issn=0028-3940&rft.eissn=1432-1920&rft.coden=NRDYAB&rft_id=info:doi/10.1007/s00234-011-0839-1&rft_dat=%3Cproquest_swepu%3E917162845%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916716115&rft_id=info:pmid/21331601&rfr_iscdi=true