A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo

Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of pep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2011-08, Vol.19 (8), p.1457-1467
Hauptverfasser: Lehto, Taavi, Simonson, Oscar E, Mäger, Imre, Ezzat, Kariem, Sork, Helena, Copolovici, Dana-Maria, Viola, Joana R, Zaghloul, Eman M, Lundin, Per, Moreno, Pedro MD, Mäe, Maarja, Oskolkov, Nikita, Suhorutšenko, Julia, Smith, CI Edvard, Andaloussi, Samir EL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1467
container_issue 8
container_start_page 1457
container_title Molecular therapy
container_volume 19
creator Lehto, Taavi
Simonson, Oscar E
Mäger, Imre
Ezzat, Kariem
Sork, Helena
Copolovici, Dana-Maria
Viola, Joana R
Zaghloul, Eman M
Lundin, Per
Moreno, Pedro MD
Mäe, Maarja
Oskolkov, Nikita
Suhorutšenko, Julia
Smith, CI Edvard
Andaloussi, Samir EL
description Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.
doi_str_mv 10.1038/mt.2011.10
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_545972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616325151</els_id><sourcerecordid>4070010811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</originalsourceid><addsrcrecordid>eNp9klGP1CAQx4nReOfqix_ANPFBo-nJtEDhxWRznusll-jDua-E0uHk3C0rtGv89tJ03XhGfSDMwG_-MPAn5CnQM6C1fLMdzioKkJN75BR4xUtKK3b_GIM4IY9Sus0RcCUekpMKalYrqE_Jall8wt3gOyxbk7Ar1miHEAuXx4Vz3nrsh2KFPRbX0fTJYSwu-2LthxgK03dzsg-PyQNnNgmfHOYF-fz-4vr8Q3n1cXV5vrwqLefNUDIrOulshZRDZ2kLTpmOGe4kxQ6okVS6VgrpOJO1sZYpbgSva9UqcGBlvSDlrJu-425s9S76rYk_dDBeH5a-5gg1Z1w1VeZf_5N_59dLHeKNTqPmAtik_namM7rFzubeo9ncKbq70_sv-ibsdQ1MgaizwIuDQAzfRkyD3vpkcbMxPYYxaSlpA01TTUe9_C8JQsiKAxM0o8__QG_DGPv8zBoaBUrR3GqmXs2UjSGliO54baB68oneDnryyZQsyLPfGz2iv4yRATYDmD9z7zHqNFnBYudjdojugv-b7k_BK8lH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791990597</pqid></control><display><type>article</type><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</creator><creatorcontrib>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</creatorcontrib><description>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2011.10</identifier><identifier>PMID: 21343913</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Transport ; Cell Line ; Cell-Penetrating Peptides - metabolism ; Cricetinae ; Cricetulus ; Drug Carriers ; Drug Delivery Systems ; Endosomes - metabolism ; Gene expression ; Gene therapy ; Gene Transfer Techniques ; Genetic Therapy - methods ; Genetic Vectors ; Humans ; Laboratories ; Mice ; Mice, Inbred BALB C ; Nanoparticles ; Nucleic Acids - metabolism ; Original ; Particle size ; Peptides ; Plasmids ; Plasmids - metabolism ; Toxicity ; Transfection - methods ; Vectors (Biology)</subject><ispartof>Molecular therapy, 2011-08, Vol.19 (8), p.1457-1467</ispartof><rights>2011 The American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><rights>Copyright © 2011 The American Society of Gene &amp; Cell Therapy 2011 The American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</citedby><cites>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21343913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56148$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:123021760$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehto, Taavi</creatorcontrib><creatorcontrib>Simonson, Oscar E</creatorcontrib><creatorcontrib>Mäger, Imre</creatorcontrib><creatorcontrib>Ezzat, Kariem</creatorcontrib><creatorcontrib>Sork, Helena</creatorcontrib><creatorcontrib>Copolovici, Dana-Maria</creatorcontrib><creatorcontrib>Viola, Joana R</creatorcontrib><creatorcontrib>Zaghloul, Eman M</creatorcontrib><creatorcontrib>Lundin, Per</creatorcontrib><creatorcontrib>Moreno, Pedro MD</creatorcontrib><creatorcontrib>Mäe, Maarja</creatorcontrib><creatorcontrib>Oskolkov, Nikita</creatorcontrib><creatorcontrib>Suhorutšenko, Julia</creatorcontrib><creatorcontrib>Smith, CI Edvard</creatorcontrib><creatorcontrib>Andaloussi, Samir EL</creatorcontrib><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Line</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Endosomes - metabolism</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Nanoparticles</subject><subject>Nucleic Acids - metabolism</subject><subject>Original</subject><subject>Particle size</subject><subject>Peptides</subject><subject>Plasmids</subject><subject>Plasmids - metabolism</subject><subject>Toxicity</subject><subject>Transfection - methods</subject><subject>Vectors (Biology)</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9klGP1CAQx4nReOfqix_ANPFBo-nJtEDhxWRznusll-jDua-E0uHk3C0rtGv89tJ03XhGfSDMwG_-MPAn5CnQM6C1fLMdzioKkJN75BR4xUtKK3b_GIM4IY9Sus0RcCUekpMKalYrqE_Jall8wt3gOyxbk7Ar1miHEAuXx4Vz3nrsh2KFPRbX0fTJYSwu-2LthxgK03dzsg-PyQNnNgmfHOYF-fz-4vr8Q3n1cXV5vrwqLefNUDIrOulshZRDZ2kLTpmOGe4kxQ6okVS6VgrpOJO1sZYpbgSva9UqcGBlvSDlrJu-425s9S76rYk_dDBeH5a-5gg1Z1w1VeZf_5N_59dLHeKNTqPmAtik_namM7rFzubeo9ncKbq70_sv-ibsdQ1MgaizwIuDQAzfRkyD3vpkcbMxPYYxaSlpA01TTUe9_C8JQsiKAxM0o8__QG_DGPv8zBoaBUrR3GqmXs2UjSGliO54baB68oneDnryyZQsyLPfGz2iv4yRATYDmD9z7zHqNFnBYudjdojugv-b7k_BK8lH</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Lehto, Taavi</creator><creator>Simonson, Oscar E</creator><creator>Mäger, Imre</creator><creator>Ezzat, Kariem</creator><creator>Sork, Helena</creator><creator>Copolovici, Dana-Maria</creator><creator>Viola, Joana R</creator><creator>Zaghloul, Eman M</creator><creator>Lundin, Per</creator><creator>Moreno, Pedro MD</creator><creator>Mäe, Maarja</creator><creator>Oskolkov, Nikita</creator><creator>Suhorutšenko, Julia</creator><creator>Smith, CI Edvard</creator><creator>Andaloussi, Samir EL</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20110801</creationdate><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><author>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Line</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Endosomes - metabolism</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Nanoparticles</topic><topic>Nucleic Acids - metabolism</topic><topic>Original</topic><topic>Particle size</topic><topic>Peptides</topic><topic>Plasmids</topic><topic>Plasmids - metabolism</topic><topic>Toxicity</topic><topic>Transfection - methods</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehto, Taavi</creatorcontrib><creatorcontrib>Simonson, Oscar E</creatorcontrib><creatorcontrib>Mäger, Imre</creatorcontrib><creatorcontrib>Ezzat, Kariem</creatorcontrib><creatorcontrib>Sork, Helena</creatorcontrib><creatorcontrib>Copolovici, Dana-Maria</creatorcontrib><creatorcontrib>Viola, Joana R</creatorcontrib><creatorcontrib>Zaghloul, Eman M</creatorcontrib><creatorcontrib>Lundin, Per</creatorcontrib><creatorcontrib>Moreno, Pedro MD</creatorcontrib><creatorcontrib>Mäe, Maarja</creatorcontrib><creatorcontrib>Oskolkov, Nikita</creatorcontrib><creatorcontrib>Suhorutšenko, Julia</creatorcontrib><creatorcontrib>Smith, CI Edvard</creatorcontrib><creatorcontrib>Andaloussi, Samir EL</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehto, Taavi</au><au>Simonson, Oscar E</au><au>Mäger, Imre</au><au>Ezzat, Kariem</au><au>Sork, Helena</au><au>Copolovici, Dana-Maria</au><au>Viola, Joana R</au><au>Zaghloul, Eman M</au><au>Lundin, Per</au><au>Moreno, Pedro MD</au><au>Mäe, Maarja</au><au>Oskolkov, Nikita</au><au>Suhorutšenko, Julia</au><au>Smith, CI Edvard</au><au>Andaloussi, Samir EL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>19</volume><issue>8</issue><spage>1457</spage><epage>1467</epage><pages>1457-1467</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21343913</pmid><doi>10.1038/mt.2011.10</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2011-08, Vol.19 (8), p.1457-1467
issn 1525-0016
1525-0024
1525-0024
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_545972
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Animals
Biological Transport
Cell Line
Cell-Penetrating Peptides - metabolism
Cricetinae
Cricetulus
Drug Carriers
Drug Delivery Systems
Endosomes - metabolism
Gene expression
Gene therapy
Gene Transfer Techniques
Genetic Therapy - methods
Genetic Vectors
Humans
Laboratories
Mice
Mice, Inbred BALB C
Nanoparticles
Nucleic Acids - metabolism
Original
Particle size
Peptides
Plasmids
Plasmids - metabolism
Toxicity
Transfection - methods
Vectors (Biology)
title A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Peptide-based%20Vector%20for%20Efficient%20Gene%20Transfer%20In%20Vitro%20and%20In%20Vivo&rft.jtitle=Molecular%20therapy&rft.au=Lehto,%20Taavi&rft.date=2011-08-01&rft.volume=19&rft.issue=8&rft.spage=1457&rft.epage=1467&rft.pages=1457-1467&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2011.10&rft_dat=%3Cproquest_swepu%3E4070010811%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791990597&rft_id=info:pmid/21343913&rft_els_id=S1525001616325151&rfr_iscdi=true