A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo
Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of pep...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2011-08, Vol.19 (8), p.1457-1467 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1467 |
---|---|
container_issue | 8 |
container_start_page | 1457 |
container_title | Molecular therapy |
container_volume | 19 |
creator | Lehto, Taavi Simonson, Oscar E Mäger, Imre Ezzat, Kariem Sork, Helena Copolovici, Dana-Maria Viola, Joana R Zaghloul, Eman M Lundin, Per Moreno, Pedro MD Mäe, Maarja Oskolkov, Nikita Suhorutšenko, Julia Smith, CI Edvard Andaloussi, Samir EL |
description | Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice. |
doi_str_mv | 10.1038/mt.2011.10 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_545972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616325151</els_id><sourcerecordid>4070010811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</originalsourceid><addsrcrecordid>eNp9klGP1CAQx4nReOfqix_ANPFBo-nJtEDhxWRznusll-jDua-E0uHk3C0rtGv89tJ03XhGfSDMwG_-MPAn5CnQM6C1fLMdzioKkJN75BR4xUtKK3b_GIM4IY9Sus0RcCUekpMKalYrqE_Jall8wt3gOyxbk7Ar1miHEAuXx4Vz3nrsh2KFPRbX0fTJYSwu-2LthxgK03dzsg-PyQNnNgmfHOYF-fz-4vr8Q3n1cXV5vrwqLefNUDIrOulshZRDZ2kLTpmOGe4kxQ6okVS6VgrpOJO1sZYpbgSva9UqcGBlvSDlrJu-425s9S76rYk_dDBeH5a-5gg1Z1w1VeZf_5N_59dLHeKNTqPmAtik_namM7rFzubeo9ncKbq70_sv-ibsdQ1MgaizwIuDQAzfRkyD3vpkcbMxPYYxaSlpA01TTUe9_C8JQsiKAxM0o8__QG_DGPv8zBoaBUrR3GqmXs2UjSGliO54baB68oneDnryyZQsyLPfGz2iv4yRATYDmD9z7zHqNFnBYudjdojugv-b7k_BK8lH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791990597</pqid></control><display><type>article</type><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</creator><creatorcontrib>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</creatorcontrib><description>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2011.10</identifier><identifier>PMID: 21343913</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Transport ; Cell Line ; Cell-Penetrating Peptides - metabolism ; Cricetinae ; Cricetulus ; Drug Carriers ; Drug Delivery Systems ; Endosomes - metabolism ; Gene expression ; Gene therapy ; Gene Transfer Techniques ; Genetic Therapy - methods ; Genetic Vectors ; Humans ; Laboratories ; Mice ; Mice, Inbred BALB C ; Nanoparticles ; Nucleic Acids - metabolism ; Original ; Particle size ; Peptides ; Plasmids ; Plasmids - metabolism ; Toxicity ; Transfection - methods ; Vectors (Biology)</subject><ispartof>Molecular therapy, 2011-08, Vol.19 (8), p.1457-1467</ispartof><rights>2011 The American Society of Gene & Cell Therapy</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><rights>Copyright © 2011 The American Society of Gene & Cell Therapy 2011 The American Society of Gene & Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</citedby><cites>FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21343913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56148$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:123021760$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehto, Taavi</creatorcontrib><creatorcontrib>Simonson, Oscar E</creatorcontrib><creatorcontrib>Mäger, Imre</creatorcontrib><creatorcontrib>Ezzat, Kariem</creatorcontrib><creatorcontrib>Sork, Helena</creatorcontrib><creatorcontrib>Copolovici, Dana-Maria</creatorcontrib><creatorcontrib>Viola, Joana R</creatorcontrib><creatorcontrib>Zaghloul, Eman M</creatorcontrib><creatorcontrib>Lundin, Per</creatorcontrib><creatorcontrib>Moreno, Pedro MD</creatorcontrib><creatorcontrib>Mäe, Maarja</creatorcontrib><creatorcontrib>Oskolkov, Nikita</creatorcontrib><creatorcontrib>Suhorutšenko, Julia</creatorcontrib><creatorcontrib>Smith, CI Edvard</creatorcontrib><creatorcontrib>Andaloussi, Samir EL</creatorcontrib><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Line</subject><subject>Cell-Penetrating Peptides - metabolism</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Endosomes - metabolism</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Nanoparticles</subject><subject>Nucleic Acids - metabolism</subject><subject>Original</subject><subject>Particle size</subject><subject>Peptides</subject><subject>Plasmids</subject><subject>Plasmids - metabolism</subject><subject>Toxicity</subject><subject>Transfection - methods</subject><subject>Vectors (Biology)</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><recordid>eNp9klGP1CAQx4nReOfqix_ANPFBo-nJtEDhxWRznusll-jDua-E0uHk3C0rtGv89tJ03XhGfSDMwG_-MPAn5CnQM6C1fLMdzioKkJN75BR4xUtKK3b_GIM4IY9Sus0RcCUekpMKalYrqE_Jall8wt3gOyxbk7Ar1miHEAuXx4Vz3nrsh2KFPRbX0fTJYSwu-2LthxgK03dzsg-PyQNnNgmfHOYF-fz-4vr8Q3n1cXV5vrwqLefNUDIrOulshZRDZ2kLTpmOGe4kxQ6okVS6VgrpOJO1sZYpbgSva9UqcGBlvSDlrJu-425s9S76rYk_dDBeH5a-5gg1Z1w1VeZf_5N_59dLHeKNTqPmAtik_namM7rFzubeo9ncKbq70_sv-ibsdQ1MgaizwIuDQAzfRkyD3vpkcbMxPYYxaSlpA01TTUe9_C8JQsiKAxM0o8__QG_DGPv8zBoaBUrR3GqmXs2UjSGliO54baB68oneDnryyZQsyLPfGz2iv4yRATYDmD9z7zHqNFnBYudjdojugv-b7k_BK8lH</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Lehto, Taavi</creator><creator>Simonson, Oscar E</creator><creator>Mäger, Imre</creator><creator>Ezzat, Kariem</creator><creator>Sork, Helena</creator><creator>Copolovici, Dana-Maria</creator><creator>Viola, Joana R</creator><creator>Zaghloul, Eman M</creator><creator>Lundin, Per</creator><creator>Moreno, Pedro MD</creator><creator>Mäe, Maarja</creator><creator>Oskolkov, Nikita</creator><creator>Suhorutšenko, Julia</creator><creator>Smith, CI Edvard</creator><creator>Andaloussi, Samir EL</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20110801</creationdate><title>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</title><author>Lehto, Taavi ; Simonson, Oscar E ; Mäger, Imre ; Ezzat, Kariem ; Sork, Helena ; Copolovici, Dana-Maria ; Viola, Joana R ; Zaghloul, Eman M ; Lundin, Per ; Moreno, Pedro MD ; Mäe, Maarja ; Oskolkov, Nikita ; Suhorutšenko, Julia ; Smith, CI Edvard ; Andaloussi, Samir EL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4c6d8fc2e051dc0b1f9ad4a5f80ed10a808fb868f5483acc495a65339b91f1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Line</topic><topic>Cell-Penetrating Peptides - metabolism</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Endosomes - metabolism</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Nanoparticles</topic><topic>Nucleic Acids - metabolism</topic><topic>Original</topic><topic>Particle size</topic><topic>Peptides</topic><topic>Plasmids</topic><topic>Plasmids - metabolism</topic><topic>Toxicity</topic><topic>Transfection - methods</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehto, Taavi</creatorcontrib><creatorcontrib>Simonson, Oscar E</creatorcontrib><creatorcontrib>Mäger, Imre</creatorcontrib><creatorcontrib>Ezzat, Kariem</creatorcontrib><creatorcontrib>Sork, Helena</creatorcontrib><creatorcontrib>Copolovici, Dana-Maria</creatorcontrib><creatorcontrib>Viola, Joana R</creatorcontrib><creatorcontrib>Zaghloul, Eman M</creatorcontrib><creatorcontrib>Lundin, Per</creatorcontrib><creatorcontrib>Moreno, Pedro MD</creatorcontrib><creatorcontrib>Mäe, Maarja</creatorcontrib><creatorcontrib>Oskolkov, Nikita</creatorcontrib><creatorcontrib>Suhorutšenko, Julia</creatorcontrib><creatorcontrib>Smith, CI Edvard</creatorcontrib><creatorcontrib>Andaloussi, Samir EL</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehto, Taavi</au><au>Simonson, Oscar E</au><au>Mäger, Imre</au><au>Ezzat, Kariem</au><au>Sork, Helena</au><au>Copolovici, Dana-Maria</au><au>Viola, Joana R</au><au>Zaghloul, Eman M</au><au>Lundin, Per</au><au>Moreno, Pedro MD</au><au>Mäe, Maarja</au><au>Oskolkov, Nikita</au><au>Suhorutšenko, Julia</au><au>Smith, CI Edvard</au><au>Andaloussi, Samir EL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>19</volume><issue>8</issue><spage>1457</spage><epage>1467</epage><pages>1457-1467</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Finding suitable nonviral delivery vehicles for nucleic acid–based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21343913</pmid><doi>10.1038/mt.2011.10</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2011-08, Vol.19 (8), p.1457-1467 |
issn | 1525-0016 1525-0024 1525-0024 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_545972 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Animals Biological Transport Cell Line Cell-Penetrating Peptides - metabolism Cricetinae Cricetulus Drug Carriers Drug Delivery Systems Endosomes - metabolism Gene expression Gene therapy Gene Transfer Techniques Genetic Therapy - methods Genetic Vectors Humans Laboratories Mice Mice, Inbred BALB C Nanoparticles Nucleic Acids - metabolism Original Particle size Peptides Plasmids Plasmids - metabolism Toxicity Transfection - methods Vectors (Biology) |
title | A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Peptide-based%20Vector%20for%20Efficient%20Gene%20Transfer%20In%20Vitro%20and%20In%20Vivo&rft.jtitle=Molecular%20therapy&rft.au=Lehto,%20Taavi&rft.date=2011-08-01&rft.volume=19&rft.issue=8&rft.spage=1457&rft.epage=1467&rft.pages=1457-1467&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2011.10&rft_dat=%3Cproquest_swepu%3E4070010811%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791990597&rft_id=info:pmid/21343913&rft_els_id=S1525001616325151&rfr_iscdi=true |