anota: analysis of differential translation in genome-wide studies
Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained wher...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2011-05, Vol.27 (10), p.1440-1441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1441 |
---|---|
container_issue | 10 |
container_start_page | 1440 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 27 |
creator | LARSSON, Ola SONENBERG, Nahum NADON, Robert |
description | Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota.
The anota Bioconductor package, www.bioconductor.org. |
doi_str_mv | 10.1093/bioinformatics/btr146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_545440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>865191058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMofv8EpRfxVM2kSZt608UvELx4D2k6lWibrJkW8d9b2XXF0wzDM-8MD2MnwC-A18Vl46MPXUyDHb2jy2ZMIMsttg9FWeVSA2xvel7ssQOiN8654qrcZXsCpBC8EvvsxoY42qvMBtt_kacsdlnruw4ThtHbPhuTDdTPR2LIfMheMcQB80_fYkbj1HqkI7bT2Z7weF0P2cvd7cviIX96vn9cXD_lTup6zDViU4Ceo2tRKKc61LYCdFyDax06QIEAqhFNUwvNy7q0tqycqkstRaWLQ5avYukTl1NjlskPNn2ZaL1Zj97nDo2SSko-8-crfpnix4Q0msGTw763AeNERpcKauDqJ1mtSJciUcJukw3c_Mg2_2Wblex573R9YWoGbDdbv3Zn4GwNWHK272aVztMfJ2H-FKriGxd8jqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865191058</pqid></control><display><type>article</type><title>anota: analysis of differential translation in genome-wide studies</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><source>Oxford Academic Journals (Open Access)</source><creator>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</creator><creatorcontrib>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</creatorcontrib><description>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota.
The anota Bioconductor package, www.bioconductor.org.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr146</identifier><identifier>PMID: 21422072</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; General aspects ; Genome, Human ; Genome-Wide Association Study - methods ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Protein Biosynthesis ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2011-05, Vol.27 (10), p.1440-1441</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</citedby><cites>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24154417$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21422072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:122503327$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>LARSSON, Ola</creatorcontrib><creatorcontrib>SONENBERG, Nahum</creatorcontrib><creatorcontrib>NADON, Robert</creatorcontrib><title>anota: analysis of differential translation in genome-wide studies</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota.
The anota Bioconductor package, www.bioconductor.org.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>General aspects</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Protein Biosynthesis</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpVkE1LxDAQhoMofv8EpRfxVM2kSZt608UvELx4D2k6lWibrJkW8d9b2XXF0wzDM-8MD2MnwC-A18Vl46MPXUyDHb2jy2ZMIMsttg9FWeVSA2xvel7ssQOiN8654qrcZXsCpBC8EvvsxoY42qvMBtt_kacsdlnruw4ThtHbPhuTDdTPR2LIfMheMcQB80_fYkbj1HqkI7bT2Z7weF0P2cvd7cviIX96vn9cXD_lTup6zDViU4Ceo2tRKKc61LYCdFyDax06QIEAqhFNUwvNy7q0tqycqkstRaWLQ5avYukTl1NjlskPNn2ZaL1Zj97nDo2SSko-8-crfpnix4Q0msGTw763AeNERpcKauDqJ1mtSJciUcJukw3c_Mg2_2Wblex573R9YWoGbDdbv3Zn4GwNWHK272aVztMfJ2H-FKriGxd8jqo</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>LARSSON, Ola</creator><creator>SONENBERG, Nahum</creator><creator>NADON, Robert</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20110515</creationdate><title>anota: analysis of differential translation in genome-wide studies</title><author>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>General aspects</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Protein Biosynthesis</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LARSSON, Ola</creatorcontrib><creatorcontrib>SONENBERG, Nahum</creatorcontrib><creatorcontrib>NADON, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LARSSON, Ola</au><au>SONENBERG, Nahum</au><au>NADON, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>anota: analysis of differential translation in genome-wide studies</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>27</volume><issue>10</issue><spage>1440</spage><epage>1441</epage><pages>1440-1441</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota.
The anota Bioconductor package, www.bioconductor.org.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21422072</pmid><doi>10.1093/bioinformatics/btr146</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2011-05, Vol.27 (10), p.1440-1441 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_545440 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; EZB Electronic Journals Library; Oxford Academic Journals (Open Access) |
subjects | Biological and medical sciences Fundamental and applied biological sciences. Psychology Gene Expression Regulation General aspects Genome, Human Genome-Wide Association Study - methods Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Protein Biosynthesis Ribosomes - genetics Ribosomes - metabolism RNA, Messenger - biosynthesis RNA, Messenger - genetics RNA, Messenger - metabolism Software |
title | anota: analysis of differential translation in genome-wide studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=anota:%20analysis%20of%20differential%20translation%20in%20genome-wide%20studies&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=LARSSON,%20Ola&rft.date=2011-05-15&rft.volume=27&rft.issue=10&rft.spage=1440&rft.epage=1441&rft.pages=1440-1441&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btr146&rft_dat=%3Cproquest_swepu%3E865191058%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865191058&rft_id=info:pmid/21422072&rfr_iscdi=true |