anota: analysis of differential translation in genome-wide studies

Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2011-05, Vol.27 (10), p.1440-1441
Hauptverfasser: LARSSON, Ola, SONENBERG, Nahum, NADON, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1441
container_issue 10
container_start_page 1440
container_title Bioinformatics (Oxford, England)
container_volume 27
creator LARSSON, Ola
SONENBERG, Nahum
NADON, Robert
description Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota. The anota Bioconductor package, www.bioconductor.org.
doi_str_mv 10.1093/bioinformatics/btr146
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_545440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>865191058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMofv8EpRfxVM2kSZt608UvELx4D2k6lWibrJkW8d9b2XXF0wzDM-8MD2MnwC-A18Vl46MPXUyDHb2jy2ZMIMsttg9FWeVSA2xvel7ssQOiN8654qrcZXsCpBC8EvvsxoY42qvMBtt_kacsdlnruw4ThtHbPhuTDdTPR2LIfMheMcQB80_fYkbj1HqkI7bT2Z7weF0P2cvd7cviIX96vn9cXD_lTup6zDViU4Ceo2tRKKc61LYCdFyDax06QIEAqhFNUwvNy7q0tqycqkstRaWLQ5avYukTl1NjlskPNn2ZaL1Zj97nDo2SSko-8-crfpnix4Q0msGTw763AeNERpcKauDqJ1mtSJciUcJukw3c_Mg2_2Wblex573R9YWoGbDdbv3Zn4GwNWHK272aVztMfJ2H-FKriGxd8jqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865191058</pqid></control><display><type>article</type><title>anota: analysis of differential translation in genome-wide studies</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>EZB Electronic Journals Library</source><source>Oxford Academic Journals (Open Access)</source><creator>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</creator><creatorcontrib>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</creatorcontrib><description>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota. The anota Bioconductor package, www.bioconductor.org.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr146</identifier><identifier>PMID: 21422072</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; General aspects ; Genome, Human ; Genome-Wide Association Study - methods ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Protein Biosynthesis ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2011-05, Vol.27 (10), p.1440-1441</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</citedby><cites>FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24154417$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21422072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:122503327$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>LARSSON, Ola</creatorcontrib><creatorcontrib>SONENBERG, Nahum</creatorcontrib><creatorcontrib>NADON, Robert</creatorcontrib><title>anota: analysis of differential translation in genome-wide studies</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota. The anota Bioconductor package, www.bioconductor.org.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>General aspects</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study - methods</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Protein Biosynthesis</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpVkE1LxDAQhoMofv8EpRfxVM2kSZt608UvELx4D2k6lWibrJkW8d9b2XXF0wzDM-8MD2MnwC-A18Vl46MPXUyDHb2jy2ZMIMsttg9FWeVSA2xvel7ssQOiN8654qrcZXsCpBC8EvvsxoY42qvMBtt_kacsdlnruw4ThtHbPhuTDdTPR2LIfMheMcQB80_fYkbj1HqkI7bT2Z7weF0P2cvd7cviIX96vn9cXD_lTup6zDViU4Ceo2tRKKc61LYCdFyDax06QIEAqhFNUwvNy7q0tqycqkstRaWLQ5avYukTl1NjlskPNn2ZaL1Zj97nDo2SSko-8-crfpnix4Q0msGTw763AeNERpcKauDqJ1mtSJciUcJukw3c_Mg2_2Wblex573R9YWoGbDdbv3Zn4GwNWHK272aVztMfJ2H-FKriGxd8jqo</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>LARSSON, Ola</creator><creator>SONENBERG, Nahum</creator><creator>NADON, Robert</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20110515</creationdate><title>anota: analysis of differential translation in genome-wide studies</title><author>LARSSON, Ola ; SONENBERG, Nahum ; NADON, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-8eeb318ffe9235c5fe8a71ec081cdcec1e2e115b2bb9280696aa67c596842783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>General aspects</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study - methods</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Protein Biosynthesis</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LARSSON, Ola</creatorcontrib><creatorcontrib>SONENBERG, Nahum</creatorcontrib><creatorcontrib>NADON, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LARSSON, Ola</au><au>SONENBERG, Nahum</au><au>NADON, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>anota: analysis of differential translation in genome-wide studies</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>27</volume><issue>10</issue><spage>1440</spage><epage>1441</epage><pages>1440-1441</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Translational control of gene expression has emerged as a major mechanism that regulates many biological processes and shows dysregulation in human diseases including cancer. When studying differential translation, levels of both actively translating mRNAs and total cytosolic mRNAs are obtained where the latter is used to correct for a possible contribution of differential cytosolic mRNA levels to the observed differential levels of actively translated mRNAs. We have recently shown that analysis of partial variance (APV) corrects for cytosolic mRNA levels more effectively than the commonly applied log ratio approach. APV provides a high degree of specificity and sensitivity for detecting biologically meaningful translation changes, especially when combined with a variance shrinkage method for estimating random error. Here we describe the anota (analysis of translational activity) R-package which implements APV, allows scrutiny of associated statistical assumptions and provides biologically motivated filters for analysis of genome wide datasets. Although the package was developed for analysis of differential translation in polysome microarray or ribosome-profiling datasets, any high-dimensional data that result in paired controls, such as RNP immunoprecipitation-microarray (RIP-CHIP) datasets, can be successfully analyzed with anota. The anota Bioconductor package, www.bioconductor.org.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21422072</pmid><doi>10.1093/bioinformatics/btr146</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2011-05, Vol.27 (10), p.1440-1441
issn 1367-4803
1367-4811
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_545440
source MEDLINE; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; EZB Electronic Journals Library; Oxford Academic Journals (Open Access)
subjects Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
General aspects
Genome, Human
Genome-Wide Association Study - methods
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Protein Biosynthesis
Ribosomes - genetics
Ribosomes - metabolism
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
RNA, Messenger - metabolism
Software
title anota: analysis of differential translation in genome-wide studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=anota:%20analysis%20of%20differential%20translation%20in%20genome-wide%20studies&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=LARSSON,%20Ola&rft.date=2011-05-15&rft.volume=27&rft.issue=10&rft.spage=1440&rft.epage=1441&rft.pages=1440-1441&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btr146&rft_dat=%3Cproquest_swepu%3E865191058%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865191058&rft_id=info:pmid/21422072&rfr_iscdi=true