Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways
Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-ter...
Gespeichert in:
Veröffentlicht in: | FRONTIERS IN COMPUTATIONAL NEUROSCIENCE 2013, Vol.7, p.76-76 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 76 |
container_title | FRONTIERS IN COMPUTATIONAL NEUROSCIENCE |
container_volume | 7 |
creator | Lindahl, Mikael Kamali Sarvestani, Iman Ekeberg, Orjan Kotaleski, Jeanette Hellgren |
description | Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs. |
doi_str_mv | 10.3389/fncom.2013.00076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_528588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372076554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-b2fb6462e1547fe210f9e18b736d8e13e6bb0190df57fb6d95340ca0f88804fc3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEoqWwZ4UssemCDL7EjrNBqspVqsSCy9ZyHDtxm9jBdqjyFLwynplOaZFg5ePj7z8X-S-K5whuCOHNa-OUnzYYIrKBENbsQXGMGMMlRZw_vBMfFU9ivISQYUbh4-IIEw5Rw-Bx8euL7Z0cgXaDdEpP2iVgHUiDBn5J85JATLLPF7PLtTJmuJeuH60E7Qri6uScrAJx8CGVSYcJzKOMOWXTeijV2aBVepWvh0i6DgzrrMM-AWaZhmu5xqfFIyPHqJ_dnCfFt_fvvp5_LC8-f_h0fnZRKkphKltsWlYxrBGtaqMxgqbRiLc1YR3XiGjWtnlD2BlaZ7JrKKmgktBwzmFlFDkpyn3deK3npRVzsJMMq_DSipvUVY60oJhTzjPf_JOfg-_-iA5ChFmDCa3wf3u9td_PhA-9uEpDllBa15l_s-czPOlO5T8Jcrzf8t6Ls4Po_U9BWJ4Vklzg9KZA8D8WHZOYbFR6HKXTfokCkRpnt1BaZfTlX-ilX0J2RBQYNzUiFa6228M9pYKPMWhzOwyCYutEsXOi2DpR7JyYJS_uLnErOFiP_AZJUN95</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297134248</pqid></control><display><type>article</type><title>Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lindahl, Mikael ; Kamali Sarvestani, Iman ; Ekeberg, Orjan ; Kotaleski, Jeanette Hellgren</creator><creatorcontrib>Lindahl, Mikael ; Kamali Sarvestani, Iman ; Ekeberg, Orjan ; Kotaleski, Jeanette Hellgren</creatorcontrib><description>Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2013.00076</identifier><identifier>PMID: 23801960</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Basal ganglia ; Computational neuroscience ; depression ; Dopamine ; Electrical stimuli ; facilitation ; Firing rate ; Globus pallidus ; Medicin och hälsovetenskap ; Neostriatum ; network model ; Neurons ; Neuroscience ; Neurosciences ; Short term ; short-term plasticity ; Solitary tract nucleus ; Spiny neurons ; Substantia nigra ; substantia nigra pars reticulata ; Subthalamic nucleus ; Synaptic plasticity</subject><ispartof>FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, Vol.7, p.76-76</ispartof><rights>2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2013 Lindahl, Kamali Sarvestani, Ekeberg and Kotaleski. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-b2fb6462e1547fe210f9e18b736d8e13e6bb0190df57fb6d95340ca0f88804fc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23801960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-125577$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:126923542$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindahl, Mikael</creatorcontrib><creatorcontrib>Kamali Sarvestani, Iman</creatorcontrib><creatorcontrib>Ekeberg, Orjan</creatorcontrib><creatorcontrib>Kotaleski, Jeanette Hellgren</creatorcontrib><title>Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways</title><title>FRONTIERS IN COMPUTATIONAL NEUROSCIENCE</title><addtitle>Front Comput Neurosci</addtitle><description>Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs.</description><subject>Basal ganglia</subject><subject>Computational neuroscience</subject><subject>depression</subject><subject>Dopamine</subject><subject>Electrical stimuli</subject><subject>facilitation</subject><subject>Firing rate</subject><subject>Globus pallidus</subject><subject>Medicin och hälsovetenskap</subject><subject>Neostriatum</subject><subject>network model</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Short term</subject><subject>short-term plasticity</subject><subject>Solitary tract nucleus</subject><subject>Spiny neurons</subject><subject>Substantia nigra</subject><subject>substantia nigra pars reticulata</subject><subject>Subthalamic nucleus</subject><subject>Synaptic plasticity</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp9kstu1DAUhiMEoqWwZ4UssemCDL7EjrNBqspVqsSCy9ZyHDtxm9jBdqjyFLwynplOaZFg5ePj7z8X-S-K5whuCOHNa-OUnzYYIrKBENbsQXGMGMMlRZw_vBMfFU9ivISQYUbh4-IIEw5Rw-Bx8euL7Z0cgXaDdEpP2iVgHUiDBn5J85JATLLPF7PLtTJmuJeuH60E7Qri6uScrAJx8CGVSYcJzKOMOWXTeijV2aBVepWvh0i6DgzrrMM-AWaZhmu5xqfFIyPHqJ_dnCfFt_fvvp5_LC8-f_h0fnZRKkphKltsWlYxrBGtaqMxgqbRiLc1YR3XiGjWtnlD2BlaZ7JrKKmgktBwzmFlFDkpyn3deK3npRVzsJMMq_DSipvUVY60oJhTzjPf_JOfg-_-iA5ChFmDCa3wf3u9td_PhA-9uEpDllBa15l_s-czPOlO5T8Jcrzf8t6Ls4Po_U9BWJ4Vklzg9KZA8D8WHZOYbFR6HKXTfokCkRpnt1BaZfTlX-ilX0J2RBQYNzUiFa6228M9pYKPMWhzOwyCYutEsXOi2DpR7JyYJS_uLnErOFiP_AZJUN95</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Lindahl, Mikael</creator><creator>Kamali Sarvestani, Iman</creator><creator>Ekeberg, Orjan</creator><creator>Kotaleski, Jeanette Hellgren</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>2013</creationdate><title>Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways</title><author>Lindahl, Mikael ; Kamali Sarvestani, Iman ; Ekeberg, Orjan ; Kotaleski, Jeanette Hellgren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-b2fb6462e1547fe210f9e18b736d8e13e6bb0190df57fb6d95340ca0f88804fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Basal ganglia</topic><topic>Computational neuroscience</topic><topic>depression</topic><topic>Dopamine</topic><topic>Electrical stimuli</topic><topic>facilitation</topic><topic>Firing rate</topic><topic>Globus pallidus</topic><topic>Medicin och hälsovetenskap</topic><topic>Neostriatum</topic><topic>network model</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Short term</topic><topic>short-term plasticity</topic><topic>Solitary tract nucleus</topic><topic>Spiny neurons</topic><topic>Substantia nigra</topic><topic>substantia nigra pars reticulata</topic><topic>Subthalamic nucleus</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindahl, Mikael</creatorcontrib><creatorcontrib>Kamali Sarvestani, Iman</creatorcontrib><creatorcontrib>Ekeberg, Orjan</creatorcontrib><creatorcontrib>Kotaleski, Jeanette Hellgren</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>FRONTIERS IN COMPUTATIONAL NEUROSCIENCE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindahl, Mikael</au><au>Kamali Sarvestani, Iman</au><au>Ekeberg, Orjan</au><au>Kotaleski, Jeanette Hellgren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways</atitle><jtitle>FRONTIERS IN COMPUTATIONAL NEUROSCIENCE</jtitle><addtitle>Front Comput Neurosci</addtitle><date>2013</date><risdate>2013</risdate><volume>7</volume><spage>76</spage><epage>76</epage><pages>76-76</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>23801960</pmid><doi>10.3389/fncom.2013.00076</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5188 |
ispartof | FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, Vol.7, p.76-76 |
issn | 1662-5188 1662-5188 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_528588 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Basal ganglia Computational neuroscience depression Dopamine Electrical stimuli facilitation Firing rate Globus pallidus Medicin och hälsovetenskap Neostriatum network model Neurons Neuroscience Neurosciences Short term short-term plasticity Solitary tract nucleus Spiny neurons Substantia nigra substantia nigra pars reticulata Subthalamic nucleus Synaptic plasticity |
title | Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20enhancement%20in%20the%20output%20stage%20of%20the%20basal%20ganglia%20by%20synaptic%20short-term%20plasticity%20in%20the%20direct,%20indirect,%20and%20hyperdirect%20pathways&rft.jtitle=FRONTIERS%20IN%20COMPUTATIONAL%20NEUROSCIENCE&rft.au=Lindahl,%20Mikael&rft.date=2013&rft.volume=7&rft.spage=76&rft.epage=76&rft.pages=76-76&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2013.00076&rft_dat=%3Cproquest_swepu%3E1372076554%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297134248&rft_id=info:pmid/23801960&rfr_iscdi=true |