The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis
The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associate...
Gespeichert in:
Veröffentlicht in: | Science signaling 2013-09, Vol.6 (291), p.ra77-ra77 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | ra77 |
---|---|
container_issue | 291 |
container_start_page | ra77 |
container_title | Science signaling |
container_volume | 6 |
creator | Yi, Chunling Shen, Zhewei Stemmer-Rachamimov, Anat Dawany, Noor Troutman, Scott Showe, Louise C Liu, Qin Shimono, Akihiko Sudol, Marius Holmgren, Lars Stanger, Ben Z Kissil, Joseph L |
description | The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis. |
doi_str_mv | 10.1126/scisignal.2004060 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_527162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24003254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-9e612f472594d3bf500decd2115a3c76dc5c82c0b09c0d6002a04a0b38761c2d3</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCI8voALsg_EFi_kuaChBAvCYkLHDhZrr1pDUkc7BTE3-OqpYLTrmZ2Znc1hJwyOGeMlxfJ-uTnvWnPOYCEEnbIAatFVdRMqt1VL1UB06qakMOU3gBKxnm9TyZcAgiu5AFJzwukAxNAfQpNiB0NDTX93IcujL7PKI34sfQRHc00fTVD0aHzZszAAgczektx8OMCW29aarFt6RBD6xuMmQx9dnN0XHYh-jn2mHw6JnuNaROebOoRebm9eb6-Lx6f7h6urx4Lq0CMRY353EZWXNXSiVmjABxaxxlTRtiqdFbZKbcwg9qCKwG4AWlgJqZVySx34ogUa9_0hcNypofoOxO_dTBeb6D33KFWvGIlz_OX6_nM5B8t9mM07T_Zf6b3Cz0Pn1qySileZgO2NrAxpBSx2WoZ6FViepuY3iSWNWd_l24VvxGJHx06l_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Yi, Chunling ; Shen, Zhewei ; Stemmer-Rachamimov, Anat ; Dawany, Noor ; Troutman, Scott ; Showe, Louise C ; Liu, Qin ; Shimono, Akihiko ; Sudol, Marius ; Holmgren, Lars ; Stanger, Ben Z ; Kissil, Joseph L</creator><creatorcontrib>Yi, Chunling ; Shen, Zhewei ; Stemmer-Rachamimov, Anat ; Dawany, Noor ; Troutman, Scott ; Showe, Louise C ; Liu, Qin ; Shimono, Akihiko ; Sudol, Marius ; Holmgren, Lars ; Stanger, Ben Z ; Kissil, Joseph L</creatorcontrib><description>The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.2004060</identifier><identifier>PMID: 24003254</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Amino Acid Motifs ; Animals ; Cell Cycle Proteins ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Cell Transformation, Neoplastic - pathology ; Epithelial Cells - metabolism ; Epithelial Cells - pathology ; HEK293 Cells ; Humans ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Liver - metabolism ; Liver - pathology ; Liver Neoplasms - genetics ; Liver Neoplasms - metabolism ; Liver Neoplasms - pathology ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation - genetics ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Structure, Tertiary ; Transcription Factors</subject><ispartof>Science signaling, 2013-09, Vol.6 (291), p.ra77-ra77</ispartof><rights>Copyright 2008 by the American Association for the Advancement of Science; all rights reserved. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-9e612f472594d3bf500decd2115a3c76dc5c82c0b09c0d6002a04a0b38761c2d3</citedby><cites>FETCH-LOGICAL-c503t-9e612f472594d3bf500decd2115a3c76dc5c82c0b09c0d6002a04a0b38761c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,550,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24003254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:127356550$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Chunling</creatorcontrib><creatorcontrib>Shen, Zhewei</creatorcontrib><creatorcontrib>Stemmer-Rachamimov, Anat</creatorcontrib><creatorcontrib>Dawany, Noor</creatorcontrib><creatorcontrib>Troutman, Scott</creatorcontrib><creatorcontrib>Showe, Louise C</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Shimono, Akihiko</creatorcontrib><creatorcontrib>Sudol, Marius</creatorcontrib><creatorcontrib>Holmgren, Lars</creatorcontrib><creatorcontrib>Stanger, Ben Z</creatorcontrib><creatorcontrib>Kissil, Joseph L</creatorcontrib><title>The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Cell Cycle Proteins</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - pathology</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - pathology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - genetics</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Transcription Factors</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpVUctOwzAQtBCI8voALsg_EFi_kuaChBAvCYkLHDhZrr1pDUkc7BTE3-OqpYLTrmZ2Znc1hJwyOGeMlxfJ-uTnvWnPOYCEEnbIAatFVdRMqt1VL1UB06qakMOU3gBKxnm9TyZcAgiu5AFJzwukAxNAfQpNiB0NDTX93IcujL7PKI34sfQRHc00fTVD0aHzZszAAgczektx8OMCW29aarFt6RBD6xuMmQx9dnN0XHYh-jn2mHw6JnuNaROebOoRebm9eb6-Lx6f7h6urx4Lq0CMRY353EZWXNXSiVmjABxaxxlTRtiqdFbZKbcwg9qCKwG4AWlgJqZVySx34ogUa9_0hcNypofoOxO_dTBeb6D33KFWvGIlz_OX6_nM5B8t9mM07T_Zf6b3Cz0Pn1qySileZgO2NrAxpBSx2WoZ6FViepuY3iSWNWd_l24VvxGJHx06l_U</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Yi, Chunling</creator><creator>Shen, Zhewei</creator><creator>Stemmer-Rachamimov, Anat</creator><creator>Dawany, Noor</creator><creator>Troutman, Scott</creator><creator>Showe, Louise C</creator><creator>Liu, Qin</creator><creator>Shimono, Akihiko</creator><creator>Sudol, Marius</creator><creator>Holmgren, Lars</creator><creator>Stanger, Ben Z</creator><creator>Kissil, Joseph L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20130903</creationdate><title>The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis</title><author>Yi, Chunling ; Shen, Zhewei ; Stemmer-Rachamimov, Anat ; Dawany, Noor ; Troutman, Scott ; Showe, Louise C ; Liu, Qin ; Shimono, Akihiko ; Sudol, Marius ; Holmgren, Lars ; Stanger, Ben Z ; Kissil, Joseph L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-9e612f472594d3bf500decd2115a3c76dc5c82c0b09c0d6002a04a0b38761c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Cell Cycle Proteins</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - pathology</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - pathology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - genetics</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Chunling</creatorcontrib><creatorcontrib>Shen, Zhewei</creatorcontrib><creatorcontrib>Stemmer-Rachamimov, Anat</creatorcontrib><creatorcontrib>Dawany, Noor</creatorcontrib><creatorcontrib>Troutman, Scott</creatorcontrib><creatorcontrib>Showe, Louise C</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Shimono, Akihiko</creatorcontrib><creatorcontrib>Sudol, Marius</creatorcontrib><creatorcontrib>Holmgren, Lars</creatorcontrib><creatorcontrib>Stanger, Ben Z</creatorcontrib><creatorcontrib>Kissil, Joseph L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Chunling</au><au>Shen, Zhewei</au><au>Stemmer-Rachamimov, Anat</au><au>Dawany, Noor</au><au>Troutman, Scott</au><au>Showe, Louise C</au><au>Liu, Qin</au><au>Shimono, Akihiko</au><au>Sudol, Marius</au><au>Holmgren, Lars</au><au>Stanger, Ben Z</au><au>Kissil, Joseph L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>6</volume><issue>291</issue><spage>ra77</spage><epage>ra77</epage><pages>ra77-ra77</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amot-p130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis.</abstract><cop>United States</cop><pmid>24003254</pmid><doi>10.1126/scisignal.2004060</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2013-09, Vol.6 (291), p.ra77-ra77 |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_527162 |
source | American Association for the Advancement of Science; MEDLINE; SWEPUB Freely available online |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Amino Acid Motifs Animals Cell Cycle Proteins Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Epithelial Cells - metabolism Epithelial Cells - pathology HEK293 Cells Humans Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - metabolism Liver - metabolism Liver - pathology Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver Neoplasms - pathology Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Knockout Microfilament Proteins - genetics Microfilament Proteins - metabolism Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation - genetics Protein Isoforms - genetics Protein Isoforms - metabolism Protein Structure, Tertiary Transcription Factors |
title | The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20p130%20isoform%20of%20angiomotin%20is%20required%20for%20Yap-mediated%20hepatic%20epithelial%20cell%20proliferation%20and%20tumorigenesis&rft.jtitle=Science%20signaling&rft.au=Yi,%20Chunling&rft.date=2013-09-03&rft.volume=6&rft.issue=291&rft.spage=ra77&rft.epage=ra77&rft.pages=ra77-ra77&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.2004060&rft_dat=%3Cpubmed_swepu%3E24003254%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24003254&rfr_iscdi=true |