A Bayesian Method for Analyzing Lateral Gene Transfer

Lateral gene transfer (LGT)—which transfers DNA between two non-vertically related individuals belonging to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public atte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systematic biology 2014-05, Vol.63 (3), p.409-420
Hauptverfasser: Sjöstrand, Joel, Tofigh, Ali, Daubin, Vincent, Arvestad, Lars, Sennblad, Bengt, Lagergren, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 3
container_start_page 409
container_title Systematic biology
container_volume 63
creator Sjöstrand, Joel
Tofigh, Ali
Daubin, Vincent
Arvestad, Lars
Sennblad, Bengt
Lagergren, Jens
description Lateral gene transfer (LGT)—which transfers DNA between two non-vertically related individuals belonging to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.
doi_str_mv 10.1093/sysbio/syu007
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_523418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43699761</jstor_id><oup_id>10.1093/sysbio/syu007</oup_id><sourcerecordid>43699761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-6635f9692c04b3565b3b340e8cac98363b15bbdec770b605f171de90e10951883</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoh9w5AiKxKVIBDx2xo6PoUCLtIhLQdwsO3G62WbjxU5Ay6_HIdtdgVQ4zWj0zOix_CbJEyCvgEj2OmyDaV0sIyHiXnIMRPCsYPzr_annLENAcZSchLAiBIAjPEyOaI6cFkCPEyzTN3prQ6v79KMdlq5OG-fTstfd9mfbX6cLPVivu_TC9ja98roPjfWPkgeN7oJ9vKunyef3767OL7PFp4sP5-UiqzjQIeOcYSO5pBXJDUOOhhmWE1tUupLRkRlAY2pbCUEMJ9iAgNpKYuPLEIqCnSbZfDf8sJvRqI1v19pvldOt2o1uYmcVUpbDxMs7-Y139WHpdhFoIQQggbj78s7dt-2XUjl_rcKogOTAxD_V9vjNsFSQI4pJ7cXML3X3B3xZLtQ0IyCByRy_TypnMxudv402DGrdhsp2ne6tG4MCBC4oo1xG9Plf6MqNPv7eb0oSLpHiQbbyLgRvm70BEDXFSM0xUnOMIv9sd3U0a1vv6dvcHAzduPnvraczugqD83s4Z1xKwYH9AnSI2o8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519069525</pqid></control><display><type>article</type><title>A Bayesian Method for Analyzing Lateral Gene Transfer</title><source>MEDLINE</source><source>JSTOR Complete Journals</source><source>Alma/SFX Local Collection</source><source>Oxford Journals</source><creator>Sjöstrand, Joel ; Tofigh, Ali ; Daubin, Vincent ; Arvestad, Lars ; Sennblad, Bengt ; Lagergren, Jens</creator><creatorcontrib>Sjöstrand, Joel ; Tofigh, Ali ; Daubin, Vincent ; Arvestad, Lars ; Sennblad, Bengt ; Lagergren, Jens</creatorcontrib><description>Lateral gene transfer (LGT)—which transfers DNA between two non-vertically related individuals belonging to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.</description><identifier>ISSN: 1063-5157</identifier><identifier>ISSN: 1076-836X</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syu007</identifier><identifier>PMID: 24562812</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Bayesian ; Bayesian analysis ; Biodiversity ; Bioinformatics ; Biological taxonomies ; Classification - methods ; Computer Science ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - genetics ; datalogi ; Environmental Sciences ; Evolution ; Evolution, Molecular ; gene duplication ; gene loss ; Gene Transfer, Horizontal ; Genes ; Genetics ; Horizontal gene transfer ; lateral gene transfer ; Life Sciences ; Markov analysis ; MCMC ; Medicin och hälsovetenskap ; Models, Theoretical ; Mollicutes ; Monte Carlo simulation ; Parsimony ; Phylogenetics ; Phylogeny ; Reconciliation ; Systematic biology ; Systematics, Phylogenetics and taxonomy ; Tenericutes - classification ; Tenericutes - genetics ; Vertices</subject><ispartof>Systematic biology, 2014-05, Vol.63 (3), p.409-420</ispartof><rights>Copyright © 2014 Society of Systematic Biologists</rights><rights>The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014</rights><rights>Copyright Oxford University Press, UK May 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-6635f9692c04b3565b3b340e8cac98363b15bbdec770b605f171de90e10951883</citedby><cites>FETCH-LOGICAL-c612t-6635f9692c04b3565b3b340e8cac98363b15bbdec770b605f171de90e10951883</cites><orcidid>0000-0001-8269-9430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43699761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43699761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1584,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24562812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01913945$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145578$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-104137$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:128771501$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sjöstrand, Joel</creatorcontrib><creatorcontrib>Tofigh, Ali</creatorcontrib><creatorcontrib>Daubin, Vincent</creatorcontrib><creatorcontrib>Arvestad, Lars</creatorcontrib><creatorcontrib>Sennblad, Bengt</creatorcontrib><creatorcontrib>Lagergren, Jens</creatorcontrib><title>A Bayesian Method for Analyzing Lateral Gene Transfer</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>Lateral gene transfer (LGT)—which transfers DNA between two non-vertically related individuals belonging to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.</description><subject>Bayes Theorem</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biological taxonomies</subject><subject>Classification - methods</subject><subject>Computer Science</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - genetics</subject><subject>datalogi</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>gene duplication</subject><subject>gene loss</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetics</subject><subject>Horizontal gene transfer</subject><subject>lateral gene transfer</subject><subject>Life Sciences</subject><subject>Markov analysis</subject><subject>MCMC</subject><subject>Medicin och hälsovetenskap</subject><subject>Models, Theoretical</subject><subject>Mollicutes</subject><subject>Monte Carlo simulation</subject><subject>Parsimony</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Reconciliation</subject><subject>Systematic biology</subject><subject>Systematics, Phylogenetics and taxonomy</subject><subject>Tenericutes - classification</subject><subject>Tenericutes - genetics</subject><subject>Vertices</subject><issn>1063-5157</issn><issn>1076-836X</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEoh9w5AiKxKVIBDx2xo6PoUCLtIhLQdwsO3G62WbjxU5Ay6_HIdtdgVQ4zWj0zOix_CbJEyCvgEj2OmyDaV0sIyHiXnIMRPCsYPzr_annLENAcZSchLAiBIAjPEyOaI6cFkCPEyzTN3prQ6v79KMdlq5OG-fTstfd9mfbX6cLPVivu_TC9ja98roPjfWPkgeN7oJ9vKunyef3767OL7PFp4sP5-UiqzjQIeOcYSO5pBXJDUOOhhmWE1tUupLRkRlAY2pbCUEMJ9iAgNpKYuPLEIqCnSbZfDf8sJvRqI1v19pvldOt2o1uYmcVUpbDxMs7-Y139WHpdhFoIQQggbj78s7dt-2XUjl_rcKogOTAxD_V9vjNsFSQI4pJ7cXML3X3B3xZLtQ0IyCByRy_TypnMxudv402DGrdhsp2ne6tG4MCBC4oo1xG9Plf6MqNPv7eb0oSLpHiQbbyLgRvm70BEDXFSM0xUnOMIv9sd3U0a1vv6dvcHAzduPnvraczugqD83s4Z1xKwYH9AnSI2o8</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Sjöstrand, Joel</creator><creator>Tofigh, Ali</creator><creator>Daubin, Vincent</creator><creator>Arvestad, Lars</creator><creator>Sennblad, Bengt</creator><creator>Lagergren, Jens</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0001-8269-9430</orcidid></search><sort><creationdate>20140501</creationdate><title>A Bayesian Method for Analyzing Lateral Gene Transfer</title><author>Sjöstrand, Joel ; Tofigh, Ali ; Daubin, Vincent ; Arvestad, Lars ; Sennblad, Bengt ; Lagergren, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-6635f9692c04b3565b3b340e8cac98363b15bbdec770b605f171de90e10951883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biological taxonomies</topic><topic>Classification - methods</topic><topic>Computer Science</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - genetics</topic><topic>datalogi</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>gene duplication</topic><topic>gene loss</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetics</topic><topic>Horizontal gene transfer</topic><topic>lateral gene transfer</topic><topic>Life Sciences</topic><topic>Markov analysis</topic><topic>MCMC</topic><topic>Medicin och hälsovetenskap</topic><topic>Models, Theoretical</topic><topic>Mollicutes</topic><topic>Monte Carlo simulation</topic><topic>Parsimony</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Reconciliation</topic><topic>Systematic biology</topic><topic>Systematics, Phylogenetics and taxonomy</topic><topic>Tenericutes - classification</topic><topic>Tenericutes - genetics</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sjöstrand, Joel</creatorcontrib><creatorcontrib>Tofigh, Ali</creatorcontrib><creatorcontrib>Daubin, Vincent</creatorcontrib><creatorcontrib>Arvestad, Lars</creatorcontrib><creatorcontrib>Sennblad, Bengt</creatorcontrib><creatorcontrib>Lagergren, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sjöstrand, Joel</au><au>Tofigh, Ali</au><au>Daubin, Vincent</au><au>Arvestad, Lars</au><au>Sennblad, Bengt</au><au>Lagergren, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Method for Analyzing Lateral Gene Transfer</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>63</volume><issue>3</issue><spage>409</spage><epage>420</epage><pages>409-420</pages><issn>1063-5157</issn><issn>1076-836X</issn><eissn>1076-836X</eissn><abstract>Lateral gene transfer (LGT)—which transfers DNA between two non-vertically related individuals belonging to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools. The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a pre-computed gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies, simple heuristics are applied that can only handle putative orthologs and completely disregard gene duplications (GDs). Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates the number of LGT and duplication events.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>24562812</pmid><doi>10.1093/sysbio/syu007</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8269-9430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-5157
ispartof Systematic biology, 2014-05, Vol.63 (3), p.409-420
issn 1063-5157
1076-836X
1076-836X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_523418
source MEDLINE; JSTOR Complete Journals; Alma/SFX Local Collection; Oxford Journals
subjects Bayes Theorem
Bayesian
Bayesian analysis
Biodiversity
Bioinformatics
Biological taxonomies
Classification - methods
Computer Science
Cyanobacteria
Cyanobacteria - classification
Cyanobacteria - genetics
datalogi
Environmental Sciences
Evolution
Evolution, Molecular
gene duplication
gene loss
Gene Transfer, Horizontal
Genes
Genetics
Horizontal gene transfer
lateral gene transfer
Life Sciences
Markov analysis
MCMC
Medicin och hälsovetenskap
Models, Theoretical
Mollicutes
Monte Carlo simulation
Parsimony
Phylogenetics
Phylogeny
Reconciliation
Systematic biology
Systematics, Phylogenetics and taxonomy
Tenericutes - classification
Tenericutes - genetics
Vertices
title A Bayesian Method for Analyzing Lateral Gene Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Method%20for%20Analyzing%20Lateral%20Gene%20Transfer&rft.jtitle=Systematic%20biology&rft.au=Sj%C3%B6strand,%20Joel&rft.date=2014-05-01&rft.volume=63&rft.issue=3&rft.spage=409&rft.epage=420&rft.pages=409-420&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syu007&rft_dat=%3Cjstor_swepu%3E43699761%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519069525&rft_id=info:pmid/24562812&rft_jstor_id=43699761&rft_oup_id=10.1093/sysbio/syu007&rfr_iscdi=true