Timing and order of transmission events is not directly reflected in a pathogen phylogeny
Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occu...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2014-09, Vol.31 (9), p.2472-2482 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2482 |
---|---|
container_issue | 9 |
container_start_page | 2472 |
container_title | Molecular biology and evolution |
container_volume | 31 |
creator | Romero-Severson, Ethan Skar, Helena Bulla, Ingo Albert, Jan Leitner, Thomas |
description | Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. |
doi_str_mv | 10.1093/molbev/msu179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_521285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1555248578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d2f6661dde79cda824812f51d6902f230f1cd23f84dac991a16c5d9bec7db27b3</originalsourceid><addsrcrecordid>eNpdkc1v1DAUxC1URLcLR67IUi9c0vojjuMLEqqgrVSJSzlwshz7ZddtYi92smj_-3q1S0s5eeT3s_VmBqGPlFxQovjlGIcOtpdjnqlUb9CCCi4rKqk6QQsii64Jb0_RWc4PhNC6bpp36JTVrawZaRfo170ffVhhExyOyUHCscdTMiGPPmcfA4YthCljn3GIE3Y-gZ2GHU7QD0WBwz5ggzdmWscVBLxZ74a92L1Hb3szZPhwPJfo5_dv91c31d2P69urr3eVrQWfKsf6pmmocyCVdaYtq1HWC-oaRVjPOOmpdYz3be2MVYoa2ljhVAdWuo7Jji9Rdfg3_4HN3OlN8qNJOx2N18erx6JAC0ZZKwr_5cCXyQjOFnfJDK-evZ4Ev9aruNU15VKWSJfo8_GDFH_PkCddorIwDCZAnLOmQojiQsi2oOf_oQ9xTqHEsacaTpRg7MWBTTHnEuzzMpTofcn6ULI-lFz4T_86eKb_tsqfAFzVp70</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556309522</pqid></control><display><type>article</type><title>Timing and order of transmission events is not directly reflected in a pathogen phylogeny</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><creator>Romero-Severson, Ethan ; Skar, Helena ; Bulla, Ingo ; Albert, Jan ; Leitner, Thomas</creator><creatorcontrib>Romero-Severson, Ethan ; Skar, Helena ; Bulla, Ingo ; Albert, Jan ; Leitner, Thomas</creatorcontrib><description>Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msu179</identifier><identifier>PMID: 24874208</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Computational Biology - methods ; Epidemiology ; Evolutionary biology ; HIV ; HIV Infections - epidemiology ; HIV Infections - transmission ; HIV Infections - virology ; HIV-1 - genetics ; HIV-1 - physiology ; Human immunodeficiency virus ; Humans ; Methods ; Models, Theoretical ; Molecular biology ; Pathogens ; Phylogenetics ; Phylogeny ; Population decline ; Population Density ; Population number</subject><ispartof>Molecular biology and evolution, 2014-09, Vol.31 (9), p.2472-2482</ispartof><rights>Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2014. This work is written by US Government employees and is in the public domain in the US.</rights><rights>Copyright Oxford Publishing Limited(England) Sep 2014</rights><rights>Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2014. This work is written by US Government employees and is in the public domain in the US. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d2f6661dde79cda824812f51d6902f230f1cd23f84dac991a16c5d9bec7db27b3</citedby><cites>FETCH-LOGICAL-c453t-d2f6661dde79cda824812f51d6902f230f1cd23f84dac991a16c5d9bec7db27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137707/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137707/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,550,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24874208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:129971530$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Romero-Severson, Ethan</creatorcontrib><creatorcontrib>Skar, Helena</creatorcontrib><creatorcontrib>Bulla, Ingo</creatorcontrib><creatorcontrib>Albert, Jan</creatorcontrib><creatorcontrib>Leitner, Thomas</creatorcontrib><title>Timing and order of transmission events is not directly reflected in a pathogen phylogeny</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters.</description><subject>Computational Biology - methods</subject><subject>Epidemiology</subject><subject>Evolutionary biology</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>HIV Infections - transmission</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - physiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Molecular biology</subject><subject>Pathogens</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Population decline</subject><subject>Population Density</subject><subject>Population number</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNpdkc1v1DAUxC1URLcLR67IUi9c0vojjuMLEqqgrVSJSzlwshz7ZddtYi92smj_-3q1S0s5eeT3s_VmBqGPlFxQovjlGIcOtpdjnqlUb9CCCi4rKqk6QQsii64Jb0_RWc4PhNC6bpp36JTVrawZaRfo170ffVhhExyOyUHCscdTMiGPPmcfA4YthCljn3GIE3Y-gZ2GHU7QD0WBwz5ggzdmWscVBLxZ74a92L1Hb3szZPhwPJfo5_dv91c31d2P69urr3eVrQWfKsf6pmmocyCVdaYtq1HWC-oaRVjPOOmpdYz3be2MVYoa2ljhVAdWuo7Jji9Rdfg3_4HN3OlN8qNJOx2N18erx6JAC0ZZKwr_5cCXyQjOFnfJDK-evZ4Ev9aruNU15VKWSJfo8_GDFH_PkCddorIwDCZAnLOmQojiQsi2oOf_oQ9xTqHEsacaTpRg7MWBTTHnEuzzMpTofcn6ULI-lFz4T_86eKb_tsqfAFzVp70</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Romero-Severson, Ethan</creator><creator>Skar, Helena</creator><creator>Bulla, Ingo</creator><creator>Albert, Jan</creator><creator>Leitner, Thomas</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20140901</creationdate><title>Timing and order of transmission events is not directly reflected in a pathogen phylogeny</title><author>Romero-Severson, Ethan ; Skar, Helena ; Bulla, Ingo ; Albert, Jan ; Leitner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d2f6661dde79cda824812f51d6902f230f1cd23f84dac991a16c5d9bec7db27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational Biology - methods</topic><topic>Epidemiology</topic><topic>Evolutionary biology</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>HIV Infections - transmission</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - physiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Molecular biology</topic><topic>Pathogens</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Population decline</topic><topic>Population Density</topic><topic>Population number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero-Severson, Ethan</creatorcontrib><creatorcontrib>Skar, Helena</creatorcontrib><creatorcontrib>Bulla, Ingo</creatorcontrib><creatorcontrib>Albert, Jan</creatorcontrib><creatorcontrib>Leitner, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero-Severson, Ethan</au><au>Skar, Helena</au><au>Bulla, Ingo</au><au>Albert, Jan</au><au>Leitner, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing and order of transmission events is not directly reflected in a pathogen phylogeny</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>31</volume><issue>9</issue><spage>2472</spage><epage>2482</epage><pages>2472-2482</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>24874208</pmid><doi>10.1093/molbev/msu179</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2014-09, Vol.31 (9), p.2472-2482 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_521285 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online; Free Full-Text Journals in Chemistry |
subjects | Computational Biology - methods Epidemiology Evolutionary biology HIV HIV Infections - epidemiology HIV Infections - transmission HIV Infections - virology HIV-1 - genetics HIV-1 - physiology Human immunodeficiency virus Humans Methods Models, Theoretical Molecular biology Pathogens Phylogenetics Phylogeny Population decline Population Density Population number |
title | Timing and order of transmission events is not directly reflected in a pathogen phylogeny |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20and%20order%20of%20transmission%20events%20is%20not%20directly%20reflected%20in%20a%20pathogen%20phylogeny&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Romero-Severson,%20Ethan&rft.date=2014-09-01&rft.volume=31&rft.issue=9&rft.spage=2472&rft.epage=2482&rft.pages=2472-2482&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msu179&rft_dat=%3Cproquest_swepu%3E1555248578%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556309522&rft_id=info:pmid/24874208&rfr_iscdi=true |