The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor

Background The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of stroke 2015-02, Vol.10 (2), p.231-244
Hauptverfasser: Parmar, Priya, Krishnamurthi, Rita, Ikram, M. Arfan, Hofman, Albert, Mirza, Saira S., Varakin, Yury, Kravchenko, Michael, Piradov, Michael, Thrift, Amanda G., Norrving, Bo, Wang, Wenzhi, Mandal, Dipes Kumar, Barker-Collo, Suzanne, Sahathevan, Ramesh, Davis, Stephen, Saposnik, Gustavo, Kivipelto, Miia, Sindi, Shireen, Bornstein, Natan M., Giroud, Maurice, Béjot, Yannick, Brainin, Michael, Poulton, Richie, Narayan, K. M. Venkat, Correia, Manuel, Freire, António, Kokubo, Yoshihiro, Wiebers, David, Mensah, George, BinDhim, Nasser F., Barber, P. Alan, Pandian, Jeyaraj Durai, Hankey, Graeme J., Mehndiratta, Man Mohan, Azhagammal, Shobhana, Ibrahim, Norlinah Mohd, Abbott, Max, Rush, Elaine, Hume, Patria, Hussein, Tasleem, Bhattacharjee, Rohit, Purohit, Mitali, Feigin, Valery L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 2
container_start_page 231
container_title International journal of stroke
container_volume 10
creator Parmar, Priya
Krishnamurthi, Rita
Ikram, M. Arfan
Hofman, Albert
Mirza, Saira S.
Varakin, Yury
Kravchenko, Michael
Piradov, Michael
Thrift, Amanda G.
Norrving, Bo
Wang, Wenzhi
Mandal, Dipes Kumar
Barker-Collo, Suzanne
Sahathevan, Ramesh
Davis, Stephen
Saposnik, Gustavo
Kivipelto, Miia
Sindi, Shireen
Bornstein, Natan M.
Giroud, Maurice
Béjot, Yannick
Brainin, Michael
Poulton, Richie
Narayan, K. M. Venkat
Correia, Manuel
Freire, António
Kokubo, Yoshihiro
Wiebers, David
Mensah, George
BinDhim, Nasser F.
Barber, P. Alan
Pandian, Jeyaraj Durai
Hankey, Graeme J.
Mehndiratta, Man Mohan
Azhagammal, Shobhana
Ibrahim, Norlinah Mohd
Abbott, Max
Rush, Elaine
Hume, Patria
Hussein, Tasleem
Bhattacharjee, Rohit
Purohit, Mitali
Feigin, Valery L.
description Background The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. Methods 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R2 statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. Results The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males–59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P < 0·006). Conclusions The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more a
doi_str_mv 10.1111/ijs.12411
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_516977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1111_ijs.12411</sage_id><sourcerecordid>1652388669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c649t-1da879e3f91fa80504aea0ddee49487f7e6a087030f7d9b8f46fc761aa2f0b893</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxyNERUvhwAsgnxAc0tqJY8ccKlXLV6WVimDhhGRN7HGb3Wwc7ATEnSfh0XgS3N1l1UpgaeTR-D8_ezyTZU8YPWFpnbbLeMIKzti97IhJLnOuuLq_90t6mD2McUkpr2QpHmSHRcUVExU7yr4srpF8HINfIfnQxpVf44jh989f5HwYXpLP0LUWxtb3xDsC5BWMQGa-69BsggvvOwK9vY0g7wPa1ow-PMoOHHQRH-_24-zTm9eL2bt8fvn2YnY-z43gasyZhVoqLJ1iDmpaUQ4I1FrEVEctnUQBtJa0pE5a1dSOC2ekYACFo02tyuMs33LjdxymRg-hXUP4oT20ehdaJQ91xYSSMunn_9V305CsSbZJcJWgBZXaYG01F9xoRcFqUxkjaAOGW0y4sy0usdZoDfZjgO4O9e5J317rK_9N87JMeJoAz3eA4L9OGEe9bqPBroMe_RR1alVR1rUQN6W-2EpN8DEGdPtrGNU3w6DTMOjNMCTt09vv2iv_dj8Jnu3-Aa5QL_0U-tSmf5D-AB46vuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652388669</pqid></control><display><type>article</type><title>The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>SAGE Complete</source><source>SWEPUB Freely available online</source><creator>Parmar, Priya ; Krishnamurthi, Rita ; Ikram, M. Arfan ; Hofman, Albert ; Mirza, Saira S. ; Varakin, Yury ; Kravchenko, Michael ; Piradov, Michael ; Thrift, Amanda G. ; Norrving, Bo ; Wang, Wenzhi ; Mandal, Dipes Kumar ; Barker-Collo, Suzanne ; Sahathevan, Ramesh ; Davis, Stephen ; Saposnik, Gustavo ; Kivipelto, Miia ; Sindi, Shireen ; Bornstein, Natan M. ; Giroud, Maurice ; Béjot, Yannick ; Brainin, Michael ; Poulton, Richie ; Narayan, K. M. Venkat ; Correia, Manuel ; Freire, António ; Kokubo, Yoshihiro ; Wiebers, David ; Mensah, George ; BinDhim, Nasser F. ; Barber, P. Alan ; Pandian, Jeyaraj Durai ; Hankey, Graeme J. ; Mehndiratta, Man Mohan ; Azhagammal, Shobhana ; Ibrahim, Norlinah Mohd ; Abbott, Max ; Rush, Elaine ; Hume, Patria ; Hussein, Tasleem ; Bhattacharjee, Rohit ; Purohit, Mitali ; Feigin, Valery L.</creator><creatorcontrib>Parmar, Priya ; Krishnamurthi, Rita ; Ikram, M. Arfan ; Hofman, Albert ; Mirza, Saira S. ; Varakin, Yury ; Kravchenko, Michael ; Piradov, Michael ; Thrift, Amanda G. ; Norrving, Bo ; Wang, Wenzhi ; Mandal, Dipes Kumar ; Barker-Collo, Suzanne ; Sahathevan, Ramesh ; Davis, Stephen ; Saposnik, Gustavo ; Kivipelto, Miia ; Sindi, Shireen ; Bornstein, Natan M. ; Giroud, Maurice ; Béjot, Yannick ; Brainin, Michael ; Poulton, Richie ; Narayan, K. M. Venkat ; Correia, Manuel ; Freire, António ; Kokubo, Yoshihiro ; Wiebers, David ; Mensah, George ; BinDhim, Nasser F. ; Barber, P. Alan ; Pandian, Jeyaraj Durai ; Hankey, Graeme J. ; Mehndiratta, Man Mohan ; Azhagammal, Shobhana ; Ibrahim, Norlinah Mohd ; Abbott, Max ; Rush, Elaine ; Hume, Patria ; Hussein, Tasleem ; Bhattacharjee, Rohit ; Purohit, Mitali ; Feigin, Valery L. ; Stroke RiskometerTM Collaboration Writing Group ; for the Stroke Riskometer™ Collaboration Writing Group</creatorcontrib><description>Background The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. Methods 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R2 statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. Results The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males–59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P &lt; 0·006). Conclusions The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more accurately predict stroke, particularly by identifying robust ethnic/race ethnicity group and country specific risk factors.</description><identifier>ISSN: 1747-4930</identifier><identifier>ISSN: 1747-4949</identifier><identifier>EISSN: 1747-4949</identifier><identifier>DOI: 10.1111/ijs.12411</identifier><identifier>PMID: 25491651</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Calibration ; Clinical Medicine ; Data Collection - methods ; Humans ; Klinisk medicin ; Medical and Health Sciences ; Medicin och hälsovetenskap ; Mobile Applications ; Netherlands ; Neurologi ; Neurology ; New Zealand ; prevention ; Prognosis ; Risk ; Risk Factors ; Russia ; Sensitivity and Specificity ; Stroke - diagnosis ; stroke prediction ; Stroke Riskometer(TM) App ; validation</subject><ispartof>International journal of stroke, 2015-02, Vol.10 (2), p.231-244</ispartof><rights>2014 The Authors</rights><rights>2014 The Authors. International Journal of Stroke published by John Wiley &amp; Sons Ltd on behalf of World Stroke Organization.</rights><rights>2014 The Authors. International Journal of Stroke published by John Wiley &amp; Sons Ltd on behalf of World Stroke Organization. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c649t-1da879e3f91fa80504aea0ddee49487f7e6a087030f7d9b8f46fc761aa2f0b893</citedby><cites>FETCH-LOGICAL-c649t-1da879e3f91fa80504aea0ddee49487f7e6a087030f7d9b8f46fc761aa2f0b893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1111/ijs.12411$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1111/ijs.12411$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25491651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/5187192$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:130614151$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Parmar, Priya</creatorcontrib><creatorcontrib>Krishnamurthi, Rita</creatorcontrib><creatorcontrib>Ikram, M. Arfan</creatorcontrib><creatorcontrib>Hofman, Albert</creatorcontrib><creatorcontrib>Mirza, Saira S.</creatorcontrib><creatorcontrib>Varakin, Yury</creatorcontrib><creatorcontrib>Kravchenko, Michael</creatorcontrib><creatorcontrib>Piradov, Michael</creatorcontrib><creatorcontrib>Thrift, Amanda G.</creatorcontrib><creatorcontrib>Norrving, Bo</creatorcontrib><creatorcontrib>Wang, Wenzhi</creatorcontrib><creatorcontrib>Mandal, Dipes Kumar</creatorcontrib><creatorcontrib>Barker-Collo, Suzanne</creatorcontrib><creatorcontrib>Sahathevan, Ramesh</creatorcontrib><creatorcontrib>Davis, Stephen</creatorcontrib><creatorcontrib>Saposnik, Gustavo</creatorcontrib><creatorcontrib>Kivipelto, Miia</creatorcontrib><creatorcontrib>Sindi, Shireen</creatorcontrib><creatorcontrib>Bornstein, Natan M.</creatorcontrib><creatorcontrib>Giroud, Maurice</creatorcontrib><creatorcontrib>Béjot, Yannick</creatorcontrib><creatorcontrib>Brainin, Michael</creatorcontrib><creatorcontrib>Poulton, Richie</creatorcontrib><creatorcontrib>Narayan, K. M. Venkat</creatorcontrib><creatorcontrib>Correia, Manuel</creatorcontrib><creatorcontrib>Freire, António</creatorcontrib><creatorcontrib>Kokubo, Yoshihiro</creatorcontrib><creatorcontrib>Wiebers, David</creatorcontrib><creatorcontrib>Mensah, George</creatorcontrib><creatorcontrib>BinDhim, Nasser F.</creatorcontrib><creatorcontrib>Barber, P. Alan</creatorcontrib><creatorcontrib>Pandian, Jeyaraj Durai</creatorcontrib><creatorcontrib>Hankey, Graeme J.</creatorcontrib><creatorcontrib>Mehndiratta, Man Mohan</creatorcontrib><creatorcontrib>Azhagammal, Shobhana</creatorcontrib><creatorcontrib>Ibrahim, Norlinah Mohd</creatorcontrib><creatorcontrib>Abbott, Max</creatorcontrib><creatorcontrib>Rush, Elaine</creatorcontrib><creatorcontrib>Hume, Patria</creatorcontrib><creatorcontrib>Hussein, Tasleem</creatorcontrib><creatorcontrib>Bhattacharjee, Rohit</creatorcontrib><creatorcontrib>Purohit, Mitali</creatorcontrib><creatorcontrib>Feigin, Valery L.</creatorcontrib><creatorcontrib>Stroke RiskometerTM Collaboration Writing Group</creatorcontrib><creatorcontrib>for the Stroke Riskometer™ Collaboration Writing Group</creatorcontrib><title>The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor</title><title>International journal of stroke</title><addtitle>Int J Stroke</addtitle><description>Background The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. Methods 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R2 statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. Results The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males–59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P &lt; 0·006). Conclusions The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more accurately predict stroke, particularly by identifying robust ethnic/race ethnicity group and country specific risk factors.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Clinical Medicine</subject><subject>Data Collection - methods</subject><subject>Humans</subject><subject>Klinisk medicin</subject><subject>Medical and Health Sciences</subject><subject>Medicin och hälsovetenskap</subject><subject>Mobile Applications</subject><subject>Netherlands</subject><subject>Neurologi</subject><subject>Neurology</subject><subject>New Zealand</subject><subject>prevention</subject><subject>Prognosis</subject><subject>Risk</subject><subject>Risk Factors</subject><subject>Russia</subject><subject>Sensitivity and Specificity</subject><subject>Stroke - diagnosis</subject><subject>stroke prediction</subject><subject>Stroke Riskometer(TM) App</subject><subject>validation</subject><issn>1747-4930</issn><issn>1747-4949</issn><issn>1747-4949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1ks1u1DAQxyNERUvhwAsgnxAc0tqJY8ccKlXLV6WVimDhhGRN7HGb3Wwc7ATEnSfh0XgS3N1l1UpgaeTR-D8_ezyTZU8YPWFpnbbLeMIKzti97IhJLnOuuLq_90t6mD2McUkpr2QpHmSHRcUVExU7yr4srpF8HINfIfnQxpVf44jh989f5HwYXpLP0LUWxtb3xDsC5BWMQGa-69BsggvvOwK9vY0g7wPa1ow-PMoOHHQRH-_24-zTm9eL2bt8fvn2YnY-z43gasyZhVoqLJ1iDmpaUQ4I1FrEVEctnUQBtJa0pE5a1dSOC2ekYACFo02tyuMs33LjdxymRg-hXUP4oT20ehdaJQ91xYSSMunn_9V305CsSbZJcJWgBZXaYG01F9xoRcFqUxkjaAOGW0y4sy0usdZoDfZjgO4O9e5J317rK_9N87JMeJoAz3eA4L9OGEe9bqPBroMe_RR1alVR1rUQN6W-2EpN8DEGdPtrGNU3w6DTMOjNMCTt09vv2iv_dj8Jnu3-Aa5QL_0U-tSmf5D-AB46vuk</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Parmar, Priya</creator><creator>Krishnamurthi, Rita</creator><creator>Ikram, M. Arfan</creator><creator>Hofman, Albert</creator><creator>Mirza, Saira S.</creator><creator>Varakin, Yury</creator><creator>Kravchenko, Michael</creator><creator>Piradov, Michael</creator><creator>Thrift, Amanda G.</creator><creator>Norrving, Bo</creator><creator>Wang, Wenzhi</creator><creator>Mandal, Dipes Kumar</creator><creator>Barker-Collo, Suzanne</creator><creator>Sahathevan, Ramesh</creator><creator>Davis, Stephen</creator><creator>Saposnik, Gustavo</creator><creator>Kivipelto, Miia</creator><creator>Sindi, Shireen</creator><creator>Bornstein, Natan M.</creator><creator>Giroud, Maurice</creator><creator>Béjot, Yannick</creator><creator>Brainin, Michael</creator><creator>Poulton, Richie</creator><creator>Narayan, K. M. Venkat</creator><creator>Correia, Manuel</creator><creator>Freire, António</creator><creator>Kokubo, Yoshihiro</creator><creator>Wiebers, David</creator><creator>Mensah, George</creator><creator>BinDhim, Nasser F.</creator><creator>Barber, P. Alan</creator><creator>Pandian, Jeyaraj Durai</creator><creator>Hankey, Graeme J.</creator><creator>Mehndiratta, Man Mohan</creator><creator>Azhagammal, Shobhana</creator><creator>Ibrahim, Norlinah Mohd</creator><creator>Abbott, Max</creator><creator>Rush, Elaine</creator><creator>Hume, Patria</creator><creator>Hussein, Tasleem</creator><creator>Bhattacharjee, Rohit</creator><creator>Purohit, Mitali</creator><creator>Feigin, Valery L.</creator><general>SAGE Publications</general><general>BlackWell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope></search><sort><creationdate>20150201</creationdate><title>The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor</title><author>Parmar, Priya ; Krishnamurthi, Rita ; Ikram, M. Arfan ; Hofman, Albert ; Mirza, Saira S. ; Varakin, Yury ; Kravchenko, Michael ; Piradov, Michael ; Thrift, Amanda G. ; Norrving, Bo ; Wang, Wenzhi ; Mandal, Dipes Kumar ; Barker-Collo, Suzanne ; Sahathevan, Ramesh ; Davis, Stephen ; Saposnik, Gustavo ; Kivipelto, Miia ; Sindi, Shireen ; Bornstein, Natan M. ; Giroud, Maurice ; Béjot, Yannick ; Brainin, Michael ; Poulton, Richie ; Narayan, K. M. Venkat ; Correia, Manuel ; Freire, António ; Kokubo, Yoshihiro ; Wiebers, David ; Mensah, George ; BinDhim, Nasser F. ; Barber, P. Alan ; Pandian, Jeyaraj Durai ; Hankey, Graeme J. ; Mehndiratta, Man Mohan ; Azhagammal, Shobhana ; Ibrahim, Norlinah Mohd ; Abbott, Max ; Rush, Elaine ; Hume, Patria ; Hussein, Tasleem ; Bhattacharjee, Rohit ; Purohit, Mitali ; Feigin, Valery L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c649t-1da879e3f91fa80504aea0ddee49487f7e6a087030f7d9b8f46fc761aa2f0b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Clinical Medicine</topic><topic>Data Collection - methods</topic><topic>Humans</topic><topic>Klinisk medicin</topic><topic>Medical and Health Sciences</topic><topic>Medicin och hälsovetenskap</topic><topic>Mobile Applications</topic><topic>Netherlands</topic><topic>Neurologi</topic><topic>Neurology</topic><topic>New Zealand</topic><topic>prevention</topic><topic>Prognosis</topic><topic>Risk</topic><topic>Risk Factors</topic><topic>Russia</topic><topic>Sensitivity and Specificity</topic><topic>Stroke - diagnosis</topic><topic>stroke prediction</topic><topic>Stroke Riskometer(TM) App</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parmar, Priya</creatorcontrib><creatorcontrib>Krishnamurthi, Rita</creatorcontrib><creatorcontrib>Ikram, M. Arfan</creatorcontrib><creatorcontrib>Hofman, Albert</creatorcontrib><creatorcontrib>Mirza, Saira S.</creatorcontrib><creatorcontrib>Varakin, Yury</creatorcontrib><creatorcontrib>Kravchenko, Michael</creatorcontrib><creatorcontrib>Piradov, Michael</creatorcontrib><creatorcontrib>Thrift, Amanda G.</creatorcontrib><creatorcontrib>Norrving, Bo</creatorcontrib><creatorcontrib>Wang, Wenzhi</creatorcontrib><creatorcontrib>Mandal, Dipes Kumar</creatorcontrib><creatorcontrib>Barker-Collo, Suzanne</creatorcontrib><creatorcontrib>Sahathevan, Ramesh</creatorcontrib><creatorcontrib>Davis, Stephen</creatorcontrib><creatorcontrib>Saposnik, Gustavo</creatorcontrib><creatorcontrib>Kivipelto, Miia</creatorcontrib><creatorcontrib>Sindi, Shireen</creatorcontrib><creatorcontrib>Bornstein, Natan M.</creatorcontrib><creatorcontrib>Giroud, Maurice</creatorcontrib><creatorcontrib>Béjot, Yannick</creatorcontrib><creatorcontrib>Brainin, Michael</creatorcontrib><creatorcontrib>Poulton, Richie</creatorcontrib><creatorcontrib>Narayan, K. M. Venkat</creatorcontrib><creatorcontrib>Correia, Manuel</creatorcontrib><creatorcontrib>Freire, António</creatorcontrib><creatorcontrib>Kokubo, Yoshihiro</creatorcontrib><creatorcontrib>Wiebers, David</creatorcontrib><creatorcontrib>Mensah, George</creatorcontrib><creatorcontrib>BinDhim, Nasser F.</creatorcontrib><creatorcontrib>Barber, P. Alan</creatorcontrib><creatorcontrib>Pandian, Jeyaraj Durai</creatorcontrib><creatorcontrib>Hankey, Graeme J.</creatorcontrib><creatorcontrib>Mehndiratta, Man Mohan</creatorcontrib><creatorcontrib>Azhagammal, Shobhana</creatorcontrib><creatorcontrib>Ibrahim, Norlinah Mohd</creatorcontrib><creatorcontrib>Abbott, Max</creatorcontrib><creatorcontrib>Rush, Elaine</creatorcontrib><creatorcontrib>Hume, Patria</creatorcontrib><creatorcontrib>Hussein, Tasleem</creatorcontrib><creatorcontrib>Bhattacharjee, Rohit</creatorcontrib><creatorcontrib>Purohit, Mitali</creatorcontrib><creatorcontrib>Feigin, Valery L.</creatorcontrib><creatorcontrib>Stroke RiskometerTM Collaboration Writing Group</creatorcontrib><creatorcontrib>for the Stroke Riskometer™ Collaboration Writing Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>International journal of stroke</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parmar, Priya</au><au>Krishnamurthi, Rita</au><au>Ikram, M. Arfan</au><au>Hofman, Albert</au><au>Mirza, Saira S.</au><au>Varakin, Yury</au><au>Kravchenko, Michael</au><au>Piradov, Michael</au><au>Thrift, Amanda G.</au><au>Norrving, Bo</au><au>Wang, Wenzhi</au><au>Mandal, Dipes Kumar</au><au>Barker-Collo, Suzanne</au><au>Sahathevan, Ramesh</au><au>Davis, Stephen</au><au>Saposnik, Gustavo</au><au>Kivipelto, Miia</au><au>Sindi, Shireen</au><au>Bornstein, Natan M.</au><au>Giroud, Maurice</au><au>Béjot, Yannick</au><au>Brainin, Michael</au><au>Poulton, Richie</au><au>Narayan, K. M. Venkat</au><au>Correia, Manuel</au><au>Freire, António</au><au>Kokubo, Yoshihiro</au><au>Wiebers, David</au><au>Mensah, George</au><au>BinDhim, Nasser F.</au><au>Barber, P. Alan</au><au>Pandian, Jeyaraj Durai</au><au>Hankey, Graeme J.</au><au>Mehndiratta, Man Mohan</au><au>Azhagammal, Shobhana</au><au>Ibrahim, Norlinah Mohd</au><au>Abbott, Max</au><au>Rush, Elaine</au><au>Hume, Patria</au><au>Hussein, Tasleem</au><au>Bhattacharjee, Rohit</au><au>Purohit, Mitali</au><au>Feigin, Valery L.</au><aucorp>Stroke RiskometerTM Collaboration Writing Group</aucorp><aucorp>for the Stroke Riskometer™ Collaboration Writing Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor</atitle><jtitle>International journal of stroke</jtitle><addtitle>Int J Stroke</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>231</spage><epage>244</epage><pages>231-244</pages><issn>1747-4930</issn><issn>1747-4949</issn><eissn>1747-4949</eissn><abstract>Background The greatest potential to reduce the burden of stroke is by primary prevention of first-ever stroke, which constitutes three quarters of all stroke. In addition to population-wide prevention strategies (the ‘mass’ approach), the ‘high risk’ approach aims to identify individuals at risk of stroke and to modify their risk factors, and risk, accordingly. Current methods of assessing and modifying stroke risk are difficult to access and implement by the general population, amongst whom most future strokes will arise. To help reduce the burden of stroke on individuals and the population a new app, the Stroke Riskometer™, has been developed. We aim to explore the validity of the app for predicting the risk of stroke compared with current best methods. Methods 752 stroke outcomes from a sample of 9501 individuals across three countries (New Zealand, Russia and the Netherlands) were utilized to investigate the performance of a novel stroke risk prediction tool algorithm (Stroke Riskometer™) compared with two established stroke risk score prediction algorithms (Framingham Stroke Risk Score [FSRS] and QStroke). We calculated the receiver operating characteristics (ROC) curves and area under the ROC curve (AUROC) with 95% confidence intervals, Harrels C-statistic and D-statistics for measure of discrimination, R2 statistics to indicate level of variability accounted for by each prediction algorithm, the Hosmer-Lemeshow statistic for calibration, and the sensitivity and specificity of each algorithm. Results The Stroke Riskometer™ performed well against the FSRS five-year AUROC for both males (FSRS = 75·0% (95% CI 72·3%–77·6%), Stroke Riskometer™ = 74·0(95% CI 71·3%–76·7%) and females [FSRS = 70·3% (95% CI 67·9%–72·8%, Stroke Riskometer™ = 71·5% (95% CI 69·0%–73·9%)], and better than QStroke [males–59·7% (95% CI 57·3%–62·0%) and comparable to females = 71·1% (95% CI 69·0%–73·1%)]. Discriminative ability of all algorithms was low (C-statistic ranging from 0·51–0·56, D-statistic ranging from 0·01–0·12). Hosmer-Lemeshow illustrated that all of the predicted risk scores were not well calibrated with the observed event data (P &lt; 0·006). Conclusions The Stroke Riskometer™ is comparable in performance for stroke prediction with FSRS and QStroke. All three algorithms performed equally poorly in predicting stroke events. The Stroke Riskometer™ will be continually developed and validated to address the need to improve the current stroke risk scoring systems to more accurately predict stroke, particularly by identifying robust ethnic/race ethnicity group and country specific risk factors.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>25491651</pmid><doi>10.1111/ijs.12411</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1747-4930
ispartof International journal of stroke, 2015-02, Vol.10 (2), p.231-244
issn 1747-4930
1747-4949
1747-4949
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_516977
source MEDLINE; Wiley Online Library Journals Frontfile Complete; SAGE Complete; SWEPUB Freely available online
subjects Algorithms
Calibration
Clinical Medicine
Data Collection - methods
Humans
Klinisk medicin
Medical and Health Sciences
Medicin och hälsovetenskap
Mobile Applications
Netherlands
Neurologi
Neurology
New Zealand
prevention
Prognosis
Risk
Risk Factors
Russia
Sensitivity and Specificity
Stroke - diagnosis
stroke prediction
Stroke Riskometer(TM) App
validation
title The Stroke Riskometer™ App: Validation of a Data Collection Tool and Stroke Risk Predictor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stroke%20Riskometer%E2%84%A2%20App:%20Validation%20of%20a%20Data%20Collection%20Tool%20and%20Stroke%20Risk%20Predictor&rft.jtitle=International%20journal%20of%20stroke&rft.au=Parmar,%20Priya&rft.aucorp=Stroke%20RiskometerTM%20Collaboration%20Writing%20Group&rft.date=2015-02-01&rft.volume=10&rft.issue=2&rft.spage=231&rft.epage=244&rft.pages=231-244&rft.issn=1747-4930&rft.eissn=1747-4949&rft_id=info:doi/10.1111/ijs.12411&rft_dat=%3Cproquest_swepu%3E1652388669%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652388669&rft_id=info:pmid/25491651&rft_sage_id=10.1111_ijs.12411&rfr_iscdi=true