Structure of the nuclease subunit of human mitochondrial RNase P
Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only activ...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2015-06, Vol.43 (11), p.5664-5672 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5672 |
---|---|
container_issue | 11 |
container_start_page | 5664 |
container_title | Nucleic acids research |
container_volume | 43 |
creator | Reinhard, Linda Sridhara, Sagar Hällberg, B Martin |
description | Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process. |
doi_str_mv | 10.1093/nar/gkv481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_513685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1712566754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-92b8b7ee540b4392862c47edd4e19c84f428b90119d4d9f63031f0c4e60e7b2b3</originalsourceid><addsrcrecordid>eNqFkU1PHDEMhqOqqCwLl_6Aao4V0pR8OJnkUhUhaJFWgPg4R5mMZ3fKfEAyAfHvmdVuEZx6smU_fmX7JeQroz8YNeKod-Foef8Emn0iMyYUz8Eo_pnMqKAyZxT0LtmL8S-lDJiEL2SXSyOFlmJGft2MIfkxBcyGOhtXmPXJt-giZjGVqW_GdX2VOtdnXTMOfjX0VWhcm11frKGrfbJTuzbiwTbOyd3Z6e3Jn3xx-fv85HiRe8nkmBte6rJAlEBLEIZrxT0UWFWAzHgNNXBdGsqYqaAytRJUsJp6QEWxKHkp5iTf6MZnfEilfQhN58KLHVxjt6X7KUMrpw9Mp83Jzw0_dTqsPPZjcO2HsY-dvlnZ5fBkAYpCFWoS-L4VCMNjwjjaroke29b1OKRoWcG4VKqQ8H9UGcY1SE0n9HCD-jDEGLB-24hRu3bTTm7ajZsT_O39DW_oP_vEKy24nG8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691284580</pqid></control><display><type>article</type><title>Structure of the nuclease subunit of human mitochondrial RNase P</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><creator>Reinhard, Linda ; Sridhara, Sagar ; Hällberg, B Martin</creator><creatorcontrib>Reinhard, Linda ; Sridhara, Sagar ; Hällberg, B Martin</creatorcontrib><description>Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkv481</identifier><identifier>PMID: 25953853</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabidopsis Proteins - chemistry ; Catalytic Domain ; Humans ; Models, Molecular ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Ribonuclease P - chemistry ; Structural Biology</subject><ispartof>Nucleic acids research, 2015-06, Vol.43 (11), p.5664-5672</ispartof><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-92b8b7ee540b4392862c47edd4e19c84f428b90119d4d9f63031f0c4e60e7b2b3</citedby><cites>FETCH-LOGICAL-c515t-92b8b7ee540b4392862c47edd4e19c84f428b90119d4d9f63031f0c4e60e7b2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477676/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477676/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25953853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:131635955$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinhard, Linda</creatorcontrib><creatorcontrib>Sridhara, Sagar</creatorcontrib><creatorcontrib>Hällberg, B Martin</creatorcontrib><title>Structure of the nuclease subunit of human mitochondrial RNase P</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.</description><subject>Arabidopsis Proteins - chemistry</subject><subject>Catalytic Domain</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Ribonuclease P - chemistry</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNqFkU1PHDEMhqOqqCwLl_6Aao4V0pR8OJnkUhUhaJFWgPg4R5mMZ3fKfEAyAfHvmdVuEZx6smU_fmX7JeQroz8YNeKod-Foef8Emn0iMyYUz8Eo_pnMqKAyZxT0LtmL8S-lDJiEL2SXSyOFlmJGft2MIfkxBcyGOhtXmPXJt-giZjGVqW_GdX2VOtdnXTMOfjX0VWhcm11frKGrfbJTuzbiwTbOyd3Z6e3Jn3xx-fv85HiRe8nkmBte6rJAlEBLEIZrxT0UWFWAzHgNNXBdGsqYqaAytRJUsJp6QEWxKHkp5iTf6MZnfEilfQhN58KLHVxjt6X7KUMrpw9Mp83Jzw0_dTqsPPZjcO2HsY-dvlnZ5fBkAYpCFWoS-L4VCMNjwjjaroke29b1OKRoWcG4VKqQ8H9UGcY1SE0n9HCD-jDEGLB-24hRu3bTTm7ajZsT_O39DW_oP_vEKy24nG8</recordid><startdate>20150623</startdate><enddate>20150623</enddate><creator>Reinhard, Linda</creator><creator>Sridhara, Sagar</creator><creator>Hällberg, B Martin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20150623</creationdate><title>Structure of the nuclease subunit of human mitochondrial RNase P</title><author>Reinhard, Linda ; Sridhara, Sagar ; Hällberg, B Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-92b8b7ee540b4392862c47edd4e19c84f428b90119d4d9f63031f0c4e60e7b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arabidopsis Proteins - chemistry</topic><topic>Catalytic Domain</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Ribonuclease P - chemistry</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinhard, Linda</creatorcontrib><creatorcontrib>Sridhara, Sagar</creatorcontrib><creatorcontrib>Hällberg, B Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinhard, Linda</au><au>Sridhara, Sagar</au><au>Hällberg, B Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the nuclease subunit of human mitochondrial RNase P</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2015-06-23</date><risdate>2015</risdate><volume>43</volume><issue>11</issue><spage>5664</spage><epage>5672</epage><pages>5664-5672</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25953853</pmid><doi>10.1093/nar/gkv481</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2015-06, Vol.43 (11), p.5664-5672 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_513685 |
source | Oxford Journals Open Access Collection; MEDLINE; PubMed Central; Directory of Open Access Journals; SWEPUB Freely available online; Free Full-Text Journals in Chemistry |
subjects | Arabidopsis Proteins - chemistry Catalytic Domain Humans Models, Molecular Protein Structure, Tertiary Protein Subunits - chemistry Ribonuclease P - chemistry Structural Biology |
title | Structure of the nuclease subunit of human mitochondrial RNase P |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20nuclease%20subunit%20of%20human%20mitochondrial%20RNase%20P&rft.jtitle=Nucleic%20acids%20research&rft.au=Reinhard,%20Linda&rft.date=2015-06-23&rft.volume=43&rft.issue=11&rft.spage=5664&rft.epage=5672&rft.pages=5664-5672&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkv481&rft_dat=%3Cproquest_swepu%3E1712566754%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691284580&rft_id=info:pmid/25953853&rfr_iscdi=true |