Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids
Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of th...
Gespeichert in:
Veröffentlicht in: | ONCOTARGET 2015-10, Vol.6 (32), p.32380-32395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32395 |
---|---|
container_issue | 32 |
container_start_page | 32380 |
container_title | ONCOTARGET |
container_volume | 6 |
creator | Wang, Huabo Teriete, Peter Hu, Angela Raveendra-Panickar, Dhanya Pendelton, Kelsey Lazo, John S Eiseman, Julie Holien, Toril Misund, Kristine Oliynyk, Ganna Arsenian-Henriksson, Marie Cosford, Nicholas D P Sundan, Anders Prochownik, Edward V |
description | Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives. |
doi_str_mv | 10.18632/oncotarget.6116 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_509971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26474287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMojujcPUm_QGtn774I4g4jXvQoIZ3FifZ0miQu8_ZGx1k8GChSSer7i8oPwCGsjmHNMDrxvfJJhmeTjhmEbAvswYY0JaIUb2_kIzCO8aXKixJeo2YXjBAjnKCa74GnCxeMSoXrp651yfm-8LZQ5d08h_wspiaZ4LWbmRCLdl4o08mYgu8K2ev1qXR9HLKSLlJwmRhM752OB2DHyi6a8e--Dx6vLh_Ob8rJ_fXt-dmkVKQmqbS8YZYqrjlmluRRDKe1ooQQhixjkLSWUd3KCiPFbc1aSznS2uLaGtXUGO-DcqEbP8zw1oohuJkMc-GlE79XrzkzglZNw2Gub_6tH_K4a2gJQoxwjh_2dMHmgpnRyvQpyO6vxJ-X3k3Fs38X-cshr6osUC0EVPAxBmNXLKzEj7Ni7az4djYjR5s9V8DSR_wF8Hymfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free E- Journals</source><creator>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</creator><creatorcontrib>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</creatorcontrib><description>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.6116</identifier><identifier>PMID: 26474287</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Antineoplastic Agents, Phytogenic - metabolism ; Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis - drug effects ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists & inhibitors ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Dose-Response Relationship, Drug ; Drug Design ; Humans ; Medicin och hälsovetenskap ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Priority Research Paper ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Proto-Oncogene Proteins c-myc - antagonists & inhibitors ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Signal Transduction - drug effects ; Structure-Activity Relationship ; Time Factors ; Transfection ; Triterpenes - metabolism ; Triterpenes - pharmacology ; Tumor Cells, Cultured</subject><ispartof>ONCOTARGET, 2015-10, Vol.6 (32), p.32380-32395</ispartof><rights>Copyright: © 2015 Wang et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</citedby><cites>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26474287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:132313271$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huabo</creatorcontrib><creatorcontrib>Teriete, Peter</creatorcontrib><creatorcontrib>Hu, Angela</creatorcontrib><creatorcontrib>Raveendra-Panickar, Dhanya</creatorcontrib><creatorcontrib>Pendelton, Kelsey</creatorcontrib><creatorcontrib>Lazo, John S</creatorcontrib><creatorcontrib>Eiseman, Julie</creatorcontrib><creatorcontrib>Holien, Toril</creatorcontrib><creatorcontrib>Misund, Kristine</creatorcontrib><creatorcontrib>Oliynyk, Ganna</creatorcontrib><creatorcontrib>Arsenian-Henriksson, Marie</creatorcontrib><creatorcontrib>Cosford, Nicholas D P</creatorcontrib><creatorcontrib>Sundan, Anders</creatorcontrib><creatorcontrib>Prochownik, Edward V</creatorcontrib><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><title>ONCOTARGET</title><addtitle>Oncotarget</addtitle><description>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</description><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists & inhibitors</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Medicin och hälsovetenskap</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Priority Research Paper</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Proto-Oncogene Proteins c-myc - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Triterpenes - metabolism</subject><subject>Triterpenes - pharmacology</subject><subject>Tumor Cells, Cultured</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kclKBDEQhoMojujcPUm_QGtn774I4g4jXvQoIZ3FifZ0miQu8_ZGx1k8GChSSer7i8oPwCGsjmHNMDrxvfJJhmeTjhmEbAvswYY0JaIUb2_kIzCO8aXKixJeo2YXjBAjnKCa74GnCxeMSoXrp651yfm-8LZQ5d08h_wspiaZ4LWbmRCLdl4o08mYgu8K2ev1qXR9HLKSLlJwmRhM752OB2DHyi6a8e--Dx6vLh_Ob8rJ_fXt-dmkVKQmqbS8YZYqrjlmluRRDKe1ooQQhixjkLSWUd3KCiPFbc1aSznS2uLaGtXUGO-DcqEbP8zw1oohuJkMc-GlE79XrzkzglZNw2Gub_6tH_K4a2gJQoxwjh_2dMHmgpnRyvQpyO6vxJ-X3k3Fs38X-cshr6osUC0EVPAxBmNXLKzEj7Ni7az4djYjR5s9V8DSR_wF8Hymfg</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Wang, Huabo</creator><creator>Teriete, Peter</creator><creator>Hu, Angela</creator><creator>Raveendra-Panickar, Dhanya</creator><creator>Pendelton, Kelsey</creator><creator>Lazo, John S</creator><creator>Eiseman, Julie</creator><creator>Holien, Toril</creator><creator>Misund, Kristine</creator><creator>Oliynyk, Ganna</creator><creator>Arsenian-Henriksson, Marie</creator><creator>Cosford, Nicholas D P</creator><creator>Sundan, Anders</creator><creator>Prochownik, Edward V</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20151020</creationdate><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><author>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists & inhibitors</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Medicin och hälsovetenskap</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Priority Research Paper</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Proto-Oncogene Proteins c-myc - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Triterpenes - metabolism</topic><topic>Triterpenes - pharmacology</topic><topic>Tumor Cells, Cultured</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huabo</creatorcontrib><creatorcontrib>Teriete, Peter</creatorcontrib><creatorcontrib>Hu, Angela</creatorcontrib><creatorcontrib>Raveendra-Panickar, Dhanya</creatorcontrib><creatorcontrib>Pendelton, Kelsey</creatorcontrib><creatorcontrib>Lazo, John S</creatorcontrib><creatorcontrib>Eiseman, Julie</creatorcontrib><creatorcontrib>Holien, Toril</creatorcontrib><creatorcontrib>Misund, Kristine</creatorcontrib><creatorcontrib>Oliynyk, Ganna</creatorcontrib><creatorcontrib>Arsenian-Henriksson, Marie</creatorcontrib><creatorcontrib>Cosford, Nicholas D P</creatorcontrib><creatorcontrib>Sundan, Anders</creatorcontrib><creatorcontrib>Prochownik, Edward V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>ONCOTARGET</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huabo</au><au>Teriete, Peter</au><au>Hu, Angela</au><au>Raveendra-Panickar, Dhanya</au><au>Pendelton, Kelsey</au><au>Lazo, John S</au><au>Eiseman, Julie</au><au>Holien, Toril</au><au>Misund, Kristine</au><au>Oliynyk, Ganna</au><au>Arsenian-Henriksson, Marie</au><au>Cosford, Nicholas D P</au><au>Sundan, Anders</au><au>Prochownik, Edward V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</atitle><jtitle>ONCOTARGET</jtitle><addtitle>Oncotarget</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>6</volume><issue>32</issue><spage>32380</spage><epage>32395</epage><pages>32380-32395</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>26474287</pmid><doi>10.18632/oncotarget.6116</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-2553 |
ispartof | ONCOTARGET, 2015-10, Vol.6 (32), p.32380-32395 |
issn | 1949-2553 1949-2553 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_509971 |
source | MEDLINE; SWEPUB Freely available online; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free E- Journals |
subjects | Antineoplastic Agents, Phytogenic - metabolism Antineoplastic Agents, Phytogenic - pharmacology Apoptosis - drug effects Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists & inhibitors Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Cell Cycle Checkpoints - drug effects Cell Line, Tumor Cell Proliferation - drug effects Dose-Response Relationship, Drug Drug Design Humans Medicin och hälsovetenskap Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Priority Research Paper Protein Binding Protein Multimerization Protein Structure, Quaternary Proto-Oncogene Proteins c-myc - antagonists & inhibitors Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Signal Transduction - drug effects Structure-Activity Relationship Time Factors Transfection Triterpenes - metabolism Triterpenes - pharmacology Tumor Cells, Cultured |
title | Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20inhibition%20of%20c-Myc-Max%20heterodimers%20by%20celastrol%20and%20celastrol-inspired%20triterpenoids&rft.jtitle=ONCOTARGET&rft.au=Wang,%20Huabo&rft.date=2015-10-20&rft.volume=6&rft.issue=32&rft.spage=32380&rft.epage=32395&rft.pages=32380-32395&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.6116&rft_dat=%3Cpubmed_swepu%3E26474287%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26474287&rfr_iscdi=true |