Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids

Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ONCOTARGET 2015-10, Vol.6 (32), p.32380-32395
Hauptverfasser: Wang, Huabo, Teriete, Peter, Hu, Angela, Raveendra-Panickar, Dhanya, Pendelton, Kelsey, Lazo, John S, Eiseman, Julie, Holien, Toril, Misund, Kristine, Oliynyk, Ganna, Arsenian-Henriksson, Marie, Cosford, Nicholas D P, Sundan, Anders, Prochownik, Edward V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32395
container_issue 32
container_start_page 32380
container_title ONCOTARGET
container_volume 6
creator Wang, Huabo
Teriete, Peter
Hu, Angela
Raveendra-Panickar, Dhanya
Pendelton, Kelsey
Lazo, John S
Eiseman, Julie
Holien, Toril
Misund, Kristine
Oliynyk, Ganna
Arsenian-Henriksson, Marie
Cosford, Nicholas D P
Sundan, Anders
Prochownik, Edward V
description Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.
doi_str_mv 10.18632/oncotarget.6116
format Article
fullrecord <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_509971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26474287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMojujcPUm_QGtn774I4g4jXvQoIZ3FifZ0miQu8_ZGx1k8GChSSer7i8oPwCGsjmHNMDrxvfJJhmeTjhmEbAvswYY0JaIUb2_kIzCO8aXKixJeo2YXjBAjnKCa74GnCxeMSoXrp651yfm-8LZQ5d08h_wspiaZ4LWbmRCLdl4o08mYgu8K2ev1qXR9HLKSLlJwmRhM752OB2DHyi6a8e--Dx6vLh_Ob8rJ_fXt-dmkVKQmqbS8YZYqrjlmluRRDKe1ooQQhixjkLSWUd3KCiPFbc1aSznS2uLaGtXUGO-DcqEbP8zw1oohuJkMc-GlE79XrzkzglZNw2Gub_6tH_K4a2gJQoxwjh_2dMHmgpnRyvQpyO6vxJ-X3k3Fs38X-cshr6osUC0EVPAxBmNXLKzEj7Ni7az4djYjR5s9V8DSR_wF8Hymfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free E- Journals</source><creator>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</creator><creatorcontrib>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</creatorcontrib><description>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.6116</identifier><identifier>PMID: 26474287</identifier><language>eng</language><publisher>United States: Impact Journals LLC</publisher><subject>Antineoplastic Agents, Phytogenic - metabolism ; Antineoplastic Agents, Phytogenic - pharmacology ; Apoptosis - drug effects ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists &amp; inhibitors ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Cell Cycle Checkpoints - drug effects ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Dose-Response Relationship, Drug ; Drug Design ; Humans ; Medicin och hälsovetenskap ; Molecular Targeted Therapy ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Priority Research Paper ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Proto-Oncogene Proteins c-myc - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; Signal Transduction - drug effects ; Structure-Activity Relationship ; Time Factors ; Transfection ; Triterpenes - metabolism ; Triterpenes - pharmacology ; Tumor Cells, Cultured</subject><ispartof>ONCOTARGET, 2015-10, Vol.6 (32), p.32380-32395</ispartof><rights>Copyright: © 2015 Wang et al. 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</citedby><cites>FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26474287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:132313271$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Huabo</creatorcontrib><creatorcontrib>Teriete, Peter</creatorcontrib><creatorcontrib>Hu, Angela</creatorcontrib><creatorcontrib>Raveendra-Panickar, Dhanya</creatorcontrib><creatorcontrib>Pendelton, Kelsey</creatorcontrib><creatorcontrib>Lazo, John S</creatorcontrib><creatorcontrib>Eiseman, Julie</creatorcontrib><creatorcontrib>Holien, Toril</creatorcontrib><creatorcontrib>Misund, Kristine</creatorcontrib><creatorcontrib>Oliynyk, Ganna</creatorcontrib><creatorcontrib>Arsenian-Henriksson, Marie</creatorcontrib><creatorcontrib>Cosford, Nicholas D P</creatorcontrib><creatorcontrib>Sundan, Anders</creatorcontrib><creatorcontrib>Prochownik, Edward V</creatorcontrib><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><title>ONCOTARGET</title><addtitle>Oncotarget</addtitle><description>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</description><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists &amp; inhibitors</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Design</subject><subject>Humans</subject><subject>Medicin och hälsovetenskap</subject><subject>Molecular Targeted Therapy</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Priority Research Paper</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Proto-Oncogene Proteins c-myc - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Triterpenes - metabolism</subject><subject>Triterpenes - pharmacology</subject><subject>Tumor Cells, Cultured</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kclKBDEQhoMojujcPUm_QGtn774I4g4jXvQoIZ3FifZ0miQu8_ZGx1k8GChSSer7i8oPwCGsjmHNMDrxvfJJhmeTjhmEbAvswYY0JaIUb2_kIzCO8aXKixJeo2YXjBAjnKCa74GnCxeMSoXrp651yfm-8LZQ5d08h_wspiaZ4LWbmRCLdl4o08mYgu8K2ev1qXR9HLKSLlJwmRhM752OB2DHyi6a8e--Dx6vLh_Ob8rJ_fXt-dmkVKQmqbS8YZYqrjlmluRRDKe1ooQQhixjkLSWUd3KCiPFbc1aSznS2uLaGtXUGO-DcqEbP8zw1oohuJkMc-GlE79XrzkzglZNw2Gub_6tH_K4a2gJQoxwjh_2dMHmgpnRyvQpyO6vxJ-X3k3Fs38X-cshr6osUC0EVPAxBmNXLKzEj7Ni7az4djYjR5s9V8DSR_wF8Hymfg</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Wang, Huabo</creator><creator>Teriete, Peter</creator><creator>Hu, Angela</creator><creator>Raveendra-Panickar, Dhanya</creator><creator>Pendelton, Kelsey</creator><creator>Lazo, John S</creator><creator>Eiseman, Julie</creator><creator>Holien, Toril</creator><creator>Misund, Kristine</creator><creator>Oliynyk, Ganna</creator><creator>Arsenian-Henriksson, Marie</creator><creator>Cosford, Nicholas D P</creator><creator>Sundan, Anders</creator><creator>Prochownik, Edward V</creator><general>Impact Journals LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20151020</creationdate><title>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</title><author>Wang, Huabo ; Teriete, Peter ; Hu, Angela ; Raveendra-Panickar, Dhanya ; Pendelton, Kelsey ; Lazo, John S ; Eiseman, Julie ; Holien, Toril ; Misund, Kristine ; Oliynyk, Ganna ; Arsenian-Henriksson, Marie ; Cosford, Nicholas D P ; Sundan, Anders ; Prochownik, Edward V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-f796f5c7d736f4116e758c544462f6614bf65dba032c7f86bf572ddf38fec9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists &amp; inhibitors</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Design</topic><topic>Humans</topic><topic>Medicin och hälsovetenskap</topic><topic>Molecular Targeted Therapy</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Priority Research Paper</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Proto-Oncogene Proteins c-myc - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Triterpenes - metabolism</topic><topic>Triterpenes - pharmacology</topic><topic>Tumor Cells, Cultured</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huabo</creatorcontrib><creatorcontrib>Teriete, Peter</creatorcontrib><creatorcontrib>Hu, Angela</creatorcontrib><creatorcontrib>Raveendra-Panickar, Dhanya</creatorcontrib><creatorcontrib>Pendelton, Kelsey</creatorcontrib><creatorcontrib>Lazo, John S</creatorcontrib><creatorcontrib>Eiseman, Julie</creatorcontrib><creatorcontrib>Holien, Toril</creatorcontrib><creatorcontrib>Misund, Kristine</creatorcontrib><creatorcontrib>Oliynyk, Ganna</creatorcontrib><creatorcontrib>Arsenian-Henriksson, Marie</creatorcontrib><creatorcontrib>Cosford, Nicholas D P</creatorcontrib><creatorcontrib>Sundan, Anders</creatorcontrib><creatorcontrib>Prochownik, Edward V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>ONCOTARGET</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huabo</au><au>Teriete, Peter</au><au>Hu, Angela</au><au>Raveendra-Panickar, Dhanya</au><au>Pendelton, Kelsey</au><au>Lazo, John S</au><au>Eiseman, Julie</au><au>Holien, Toril</au><au>Misund, Kristine</au><au>Oliynyk, Ganna</au><au>Arsenian-Henriksson, Marie</au><au>Cosford, Nicholas D P</au><au>Sundan, Anders</au><au>Prochownik, Edward V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids</atitle><jtitle>ONCOTARGET</jtitle><addtitle>Oncotarget</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>6</volume><issue>32</issue><spage>32380</spage><epage>32395</epage><pages>32380-32395</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.</abstract><cop>United States</cop><pub>Impact Journals LLC</pub><pmid>26474287</pmid><doi>10.18632/oncotarget.6116</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof ONCOTARGET, 2015-10, Vol.6 (32), p.32380-32395
issn 1949-2553
1949-2553
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_509971
source MEDLINE; SWEPUB Freely available online; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free E- Journals
subjects Antineoplastic Agents, Phytogenic - metabolism
Antineoplastic Agents, Phytogenic - pharmacology
Apoptosis - drug effects
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - antagonists & inhibitors
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Cell Cycle Checkpoints - drug effects
Cell Line, Tumor
Cell Proliferation - drug effects
Dose-Response Relationship, Drug
Drug Design
Humans
Medicin och hälsovetenskap
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Priority Research Paper
Protein Binding
Protein Multimerization
Protein Structure, Quaternary
Proto-Oncogene Proteins c-myc - antagonists & inhibitors
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Signal Transduction - drug effects
Structure-Activity Relationship
Time Factors
Transfection
Triterpenes - metabolism
Triterpenes - pharmacology
Tumor Cells, Cultured
title Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20inhibition%20of%20c-Myc-Max%20heterodimers%20by%20celastrol%20and%20celastrol-inspired%20triterpenoids&rft.jtitle=ONCOTARGET&rft.au=Wang,%20Huabo&rft.date=2015-10-20&rft.volume=6&rft.issue=32&rft.spage=32380&rft.epage=32395&rft.pages=32380-32395&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.6116&rft_dat=%3Cpubmed_swepu%3E26474287%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/26474287&rfr_iscdi=true