Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

Yun Chen, Albin Sandelin, Torben Heick Jensen and colleagues describe general rules governing the expression of reverse-oriented promoter upstream transcripts (PROMPTs) based on the orientation and proximity of promoter pairs. They characterize how the distance between promoters affects the expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2016-09, Vol.48 (9), p.984-994
Hauptverfasser: Chen, Yun, Pai, Athma A, Herudek, Jan, Lubas, Michal, Meola, Nicola, Järvelin, Aino I, Andersson, Robin, Pelechano, Vicent, Steinmetz, Lars M, Jensen, Torben Heick, Sandelin, Albin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 9
container_start_page 984
container_title Nature genetics
container_volume 48
creator Chen, Yun
Pai, Athma A
Herudek, Jan
Lubas, Michal
Meola, Nicola
Järvelin, Aino I
Andersson, Robin
Pelechano, Vicent
Steinmetz, Lars M
Jensen, Torben Heick
Sandelin, Albin
description Yun Chen, Albin Sandelin, Torben Heick Jensen and colleagues describe general rules governing the expression of reverse-oriented promoter upstream transcripts (PROMPTs) based on the orientation and proximity of promoter pairs. They characterize how the distance between promoters affects the expression of PROMPTs and the usage of alternate mRNA transcription start sites. Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.
doi_str_mv 10.1038/ng.3616
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_503611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461940429</galeid><sourcerecordid>A461940429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c653t-864a0954f8fe4cad0d5c99c36726202bfc327b668f718a7853ee8a40fed5cd53</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqUg_gGKxAJYZLDjR5wN0qjiUamiqFRsLY9znbokdmp7Wvrv8TDTTqcCCXmRK_s75zrHtyheYjTDiIj3rp8RjvmjYh8zyivcYPE414jjiiLC94pnMV4ghClF4mmxVzeUMUL5fmG-Beu0nQaIpfGhPP06L0dIauEHG8dSua5UQ4LgVLJXUKagXNTBTsl6V1pnk1V_ymubzq0r9eAjDDdlnJSGrpyCH31Wx-fFE6OGCC8234Pi7NPHs8Mv1fHJ56PD-XGlOSOpEpwq1DJqhAGqVYc6pttWE97UvEb1wmhSNwvOhck_qBrBCIBQFBnIYMfIQVGtbeM1TMuFnIIdVbiRXlm52fqZK5Ash4Jx5tt_8vnu3VZ0K8SEYspQjbL2w1qbgRE6DS6HM-xa7Jw4ey57f5V7I0HpqvnbjUHwl0uISY42ahgG5cAvo8QCMy4wwTyjrx-gF36Z32RYUbShDUeEbqleDSCtMz731StTOacctxTRus3U7C9UXh2MVnsHxub9HcG7HUFmEvxKvVrGKI--n_4_e_Jjl32zZnXwMQYwd9lhJFdTLV0vV1OdyVf3o77jbsd4G2XMR66HcC-fB16_AWgRAAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847476034</pqid></control><display><type>article</type><title>Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters</title><source>MEDLINE</source><source>Nature</source><source>SWEPUB Freely available online</source><source>Alma/SFX Local Collection</source><creator>Chen, Yun ; Pai, Athma A ; Herudek, Jan ; Lubas, Michal ; Meola, Nicola ; Järvelin, Aino I ; Andersson, Robin ; Pelechano, Vicent ; Steinmetz, Lars M ; Jensen, Torben Heick ; Sandelin, Albin</creator><creatorcontrib>Chen, Yun ; Pai, Athma A ; Herudek, Jan ; Lubas, Michal ; Meola, Nicola ; Järvelin, Aino I ; Andersson, Robin ; Pelechano, Vicent ; Steinmetz, Lars M ; Jensen, Torben Heick ; Sandelin, Albin</creatorcontrib><description>Yun Chen, Albin Sandelin, Torben Heick Jensen and colleagues describe general rules governing the expression of reverse-oriented promoter upstream transcripts (PROMPTs) based on the orientation and proximity of promoter pairs. They characterize how the distance between promoters affects the expression of PROMPTs and the usage of alternate mRNA transcription start sites. Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3616</identifier><identifier>PMID: 27455346</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/89 ; 38/39 ; 38/91 ; 45/15 ; 45/77 ; 631/114/2164 ; 631/208/200 ; 631/337/2019 ; Agriculture ; Alternative Splicing - genetics ; analysis ; Animal Genetics and Genomics ; Annotations ; Biomedicine ; Cancer Research ; Gene expression ; Gene Function ; Genetic research ; Genetic transcription ; Genomes ; Grants ; High-Throughput Nucleotide Sequencing ; Human Genetics ; Humans ; Laboratories ; Mammals ; Medicin och hälsovetenskap ; Models, Genetic ; Polyadenylation ; Principles ; Promoter Regions, Genetic - genetics ; Promoters (Genetics) ; Properties ; RNA - genetics ; RNA - metabolism ; Transcription Initiation Site ; Transcription, Genetic - genetics</subject><ispartof>Nature genetics, 2016-09, Vol.48 (9), p.984-994</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c653t-864a0954f8fe4cad0d5c99c36726202bfc327b668f718a7853ee8a40fed5cd53</citedby><cites>FETCH-LOGICAL-c653t-864a0954f8fe4cad0d5c99c36726202bfc327b668f718a7853ee8a40fed5cd53</cites><orcidid>0000-0002-7109-7378 ; 0000-0003-1516-879X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27455346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:134145020$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Pai, Athma A</creatorcontrib><creatorcontrib>Herudek, Jan</creatorcontrib><creatorcontrib>Lubas, Michal</creatorcontrib><creatorcontrib>Meola, Nicola</creatorcontrib><creatorcontrib>Järvelin, Aino I</creatorcontrib><creatorcontrib>Andersson, Robin</creatorcontrib><creatorcontrib>Pelechano, Vicent</creatorcontrib><creatorcontrib>Steinmetz, Lars M</creatorcontrib><creatorcontrib>Jensen, Torben Heick</creatorcontrib><creatorcontrib>Sandelin, Albin</creatorcontrib><title>Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Yun Chen, Albin Sandelin, Torben Heick Jensen and colleagues describe general rules governing the expression of reverse-oriented promoter upstream transcripts (PROMPTs) based on the orientation and proximity of promoter pairs. They characterize how the distance between promoters affects the expression of PROMPTs and the usage of alternate mRNA transcription start sites. Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.</description><subject>13/89</subject><subject>38/39</subject><subject>38/91</subject><subject>45/15</subject><subject>45/77</subject><subject>631/114/2164</subject><subject>631/208/200</subject><subject>631/337/2019</subject><subject>Agriculture</subject><subject>Alternative Splicing - genetics</subject><subject>analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Annotations</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Grants</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Mammals</subject><subject>Medicin och hälsovetenskap</subject><subject>Models, Genetic</subject><subject>Polyadenylation</subject><subject>Principles</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters (Genetics)</subject><subject>Properties</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Transcription Initiation Site</subject><subject>Transcription, Genetic - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqNkktv1DAUhSMEoqUg_gGKxAJYZLDjR5wN0qjiUamiqFRsLY9znbokdmp7Wvrv8TDTTqcCCXmRK_s75zrHtyheYjTDiIj3rp8RjvmjYh8zyivcYPE414jjiiLC94pnMV4ghClF4mmxVzeUMUL5fmG-Beu0nQaIpfGhPP06L0dIauEHG8dSua5UQ4LgVLJXUKagXNTBTsl6V1pnk1V_ymubzq0r9eAjDDdlnJSGrpyCH31Wx-fFE6OGCC8234Pi7NPHs8Mv1fHJ56PD-XGlOSOpEpwq1DJqhAGqVYc6pttWE97UvEb1wmhSNwvOhck_qBrBCIBQFBnIYMfIQVGtbeM1TMuFnIIdVbiRXlm52fqZK5Ash4Jx5tt_8vnu3VZ0K8SEYspQjbL2w1qbgRE6DS6HM-xa7Jw4ey57f5V7I0HpqvnbjUHwl0uISY42ahgG5cAvo8QCMy4wwTyjrx-gF36Z32RYUbShDUeEbqleDSCtMz731StTOacctxTRus3U7C9UXh2MVnsHxub9HcG7HUFmEvxKvVrGKI--n_4_e_Jjl32zZnXwMQYwd9lhJFdTLV0vV1OdyVf3o77jbsd4G2XMR66HcC-fB16_AWgRAAY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Chen, Yun</creator><creator>Pai, Athma A</creator><creator>Herudek, Jan</creator><creator>Lubas, Michal</creator><creator>Meola, Nicola</creator><creator>Järvelin, Aino I</creator><creator>Andersson, Robin</creator><creator>Pelechano, Vicent</creator><creator>Steinmetz, Lars M</creator><creator>Jensen, Torben Heick</creator><creator>Sandelin, Albin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7109-7378</orcidid><orcidid>https://orcid.org/0000-0003-1516-879X</orcidid></search><sort><creationdate>20160901</creationdate><title>Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters</title><author>Chen, Yun ; Pai, Athma A ; Herudek, Jan ; Lubas, Michal ; Meola, Nicola ; Järvelin, Aino I ; Andersson, Robin ; Pelechano, Vicent ; Steinmetz, Lars M ; Jensen, Torben Heick ; Sandelin, Albin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c653t-864a0954f8fe4cad0d5c99c36726202bfc327b668f718a7853ee8a40fed5cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/89</topic><topic>38/39</topic><topic>38/91</topic><topic>45/15</topic><topic>45/77</topic><topic>631/114/2164</topic><topic>631/208/200</topic><topic>631/337/2019</topic><topic>Agriculture</topic><topic>Alternative Splicing - genetics</topic><topic>analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Annotations</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Grants</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Mammals</topic><topic>Medicin och hälsovetenskap</topic><topic>Models, Genetic</topic><topic>Polyadenylation</topic><topic>Principles</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters (Genetics)</topic><topic>Properties</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Transcription Initiation Site</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Pai, Athma A</creatorcontrib><creatorcontrib>Herudek, Jan</creatorcontrib><creatorcontrib>Lubas, Michal</creatorcontrib><creatorcontrib>Meola, Nicola</creatorcontrib><creatorcontrib>Järvelin, Aino I</creatorcontrib><creatorcontrib>Andersson, Robin</creatorcontrib><creatorcontrib>Pelechano, Vicent</creatorcontrib><creatorcontrib>Steinmetz, Lars M</creatorcontrib><creatorcontrib>Jensen, Torben Heick</creatorcontrib><creatorcontrib>Sandelin, Albin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yun</au><au>Pai, Athma A</au><au>Herudek, Jan</au><au>Lubas, Michal</au><au>Meola, Nicola</au><au>Järvelin, Aino I</au><au>Andersson, Robin</au><au>Pelechano, Vicent</au><au>Steinmetz, Lars M</au><au>Jensen, Torben Heick</au><au>Sandelin, Albin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>48</volume><issue>9</issue><spage>984</spage><epage>994</epage><pages>984-994</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>Yun Chen, Albin Sandelin, Torben Heick Jensen and colleagues describe general rules governing the expression of reverse-oriented promoter upstream transcripts (PROMPTs) based on the orientation and proximity of promoter pairs. They characterize how the distance between promoters affects the expression of PROMPTs and the usage of alternate mRNA transcription start sites. Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27455346</pmid><doi>10.1038/ng.3616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7109-7378</orcidid><orcidid>https://orcid.org/0000-0003-1516-879X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2016-09, Vol.48 (9), p.984-994
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_503611
source MEDLINE; Nature; SWEPUB Freely available online; Alma/SFX Local Collection
subjects 13/89
38/39
38/91
45/15
45/77
631/114/2164
631/208/200
631/337/2019
Agriculture
Alternative Splicing - genetics
analysis
Animal Genetics and Genomics
Annotations
Biomedicine
Cancer Research
Gene expression
Gene Function
Genetic research
Genetic transcription
Genomes
Grants
High-Throughput Nucleotide Sequencing
Human Genetics
Humans
Laboratories
Mammals
Medicin och hälsovetenskap
Models, Genetic
Polyadenylation
Principles
Promoter Regions, Genetic - genetics
Promoters (Genetics)
Properties
RNA - genetics
RNA - metabolism
Transcription Initiation Site
Transcription, Genetic - genetics
title Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20for%20RNA%20metabolism%20and%20alternative%20transcription%20initiation%20within%20closely%20spaced%20promoters&rft.jtitle=Nature%20genetics&rft.au=Chen,%20Yun&rft.date=2016-09-01&rft.volume=48&rft.issue=9&rft.spage=984&rft.epage=994&rft.pages=984-994&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3616&rft_dat=%3Cgale_swepu%3EA461940429%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847476034&rft_id=info:pmid/27455346&rft_galeid=A461940429&rfr_iscdi=true