Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets
Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transd...
Gespeichert in:
Veröffentlicht in: | CELL DEATH AND DIFFERENTIATION 2017-02, Vol.24 (2), p.251-262 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | CELL DEATH AND DIFFERENTIATION |
container_volume | 24 |
creator | Norberg, Erik Lako, Ana Chen, Pei-Hsuan Stanley, Illana A Zhou, Feng Ficarro, Scott B Chapuy, Bjoern Chen, Linfeng Rodig, Scott Shin, Donghyuk Choi, Dong Wook Lee, Sangho Shipp, Margaret A Marto, Jarrod A Danial, Nika N |
description | Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors. |
doi_str_mv | 10.1038/cdd.2016.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_501590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311618151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-a95320680a072123df0bc6331e9d3cafe0366c7f322800e23aab2f6ad29e49f53</originalsourceid><addsrcrecordid>eNp1kk1v1DAYhCMEoqVw44wiceFAtq_txI4vSKV8FKkSFzhbjmNvXJI42M5WK_48TnfbblE52fL7zNgeTZa9RrBCQOpT1bYrDIiuEKJPsmNUMlpUJZCnaU8qKDiU7Ch7EcIVAFDG6fPsCDNGa4TxcfbnkzVGez1GK_tcuTF628zRujF3Jo-dzgcbnerc2PqFiF6OoZc3wCRjdy23eXQ3YJj9xm4Sk4Rtcp2Dznvp1zr_WCjd93m_HabODTKRTdAxvMyeGdkH_Wq_nmQ_v3z-cX5RXH7_-u387LJQFUOxkLwiGGgNEhhGmLQGGkUJQZq3REmjgVCqmCEY1wAaEykbbKhsMdclNxU5yYqdb7jW09yIydtB-q1w0or90a-006ICVHFIPP8vP3nX3otuhSloAiWp66T9sNMmYNCtSsF62T-0eDAZbSfWbiMqzDkDngze7Q28-z3rEMVgwxKfHLWbg0A1rQmpEKYJffsPeuVmP6YoF4ogTikrE_V-RynvQvDa3D0GgVgaJFKDxNIgkRqU8DeHH7iDbytzkGYajWvtD259zPAv79zUrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863196674</pqid></control><display><type>article</type><title>Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Norberg, Erik ; Lako, Ana ; Chen, Pei-Hsuan ; Stanley, Illana A ; Zhou, Feng ; Ficarro, Scott B ; Chapuy, Bjoern ; Chen, Linfeng ; Rodig, Scott ; Shin, Donghyuk ; Choi, Dong Wook ; Lee, Sangho ; Shipp, Margaret A ; Marto, Jarrod A ; Danial, Nika N</creator><creatorcontrib>Norberg, Erik ; Lako, Ana ; Chen, Pei-Hsuan ; Stanley, Illana A ; Zhou, Feng ; Ficarro, Scott B ; Chapuy, Bjoern ; Chen, Linfeng ; Rodig, Scott ; Shin, Donghyuk ; Choi, Dong Wook ; Lee, Sangho ; Shipp, Margaret A ; Marto, Jarrod A ; Danial, Nika N</creatorcontrib><description>Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.</description><identifier>ISSN: 1350-9047</identifier><identifier>ISSN: 1476-5403</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2016.116</identifier><identifier>PMID: 27768122</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 631/45/607 ; 631/67/2327 ; 631/67/2329 ; 82/29 ; 82/58 ; 82/80 ; 82/81 ; 96/34 ; Acetylcysteine - pharmacology ; Amino Acid Motifs ; Anti-Bacterial Agents - pharmacology ; Apoptosis ; Biochemistry ; Biology ; Biomedical and Life Sciences ; Cancer ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Survival - drug effects ; Cytochrome ; Dehydrogenases ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Fatty acids ; Gene expression ; Humans ; Life Sciences ; Lymphoma ; Lymphoma, Large B-Cell, Diffuse - metabolism ; Lymphoma, Large B-Cell, Diffuse - pathology ; Medicin och hälsovetenskap ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Proteins - antagonists & inhibitors ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Original Paper ; Oxidation ; Oxidative Phosphorylation - drug effects ; Peptide Elongation Factor G - antagonists & inhibitors ; Peptide Elongation Factor G - genetics ; Peptide Elongation Factor G - metabolism ; Peptide Elongation Factor Tu - antagonists & inhibitors ; Peptide Elongation Factor Tu - genetics ; Peptide Elongation Factor Tu - metabolism ; Phosphorylation ; Proteins ; Reactive Oxygen Species - metabolism ; Receptors, Antigen, B-Cell ; Ribosomal Proteins - antagonists & inhibitors ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Signal Transduction - drug effects ; Stem Cells ; Tumor Cells, Cultured ; Tumors ; Yeast</subject><ispartof>CELL DEATH AND DIFFERENTIATION, 2017-02, Vol.24 (2), p.251-262</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017 Macmillan Publishers Limited, part of Springer Nature. 2017 Macmillan Publishers Limited, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-a95320680a072123df0bc6331e9d3cafe0366c7f322800e23aab2f6ad29e49f53</citedby><cites>FETCH-LOGICAL-c571t-a95320680a072123df0bc6331e9d3cafe0366c7f322800e23aab2f6ad29e49f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299709/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299709/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27768122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135304388$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Norberg, Erik</creatorcontrib><creatorcontrib>Lako, Ana</creatorcontrib><creatorcontrib>Chen, Pei-Hsuan</creatorcontrib><creatorcontrib>Stanley, Illana A</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Ficarro, Scott B</creatorcontrib><creatorcontrib>Chapuy, Bjoern</creatorcontrib><creatorcontrib>Chen, Linfeng</creatorcontrib><creatorcontrib>Rodig, Scott</creatorcontrib><creatorcontrib>Shin, Donghyuk</creatorcontrib><creatorcontrib>Choi, Dong Wook</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Shipp, Margaret A</creatorcontrib><creatorcontrib>Marto, Jarrod A</creatorcontrib><creatorcontrib>Danial, Nika N</creatorcontrib><title>Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets</title><title>CELL DEATH AND DIFFERENTIATION</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.</description><subject>13/89</subject><subject>631/45/607</subject><subject>631/67/2327</subject><subject>631/67/2329</subject><subject>82/29</subject><subject>82/58</subject><subject>82/80</subject><subject>82/81</subject><subject>96/34</subject><subject>Acetylcysteine - pharmacology</subject><subject>Amino Acid Motifs</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Survival - drug effects</subject><subject>Cytochrome</subject><subject>Dehydrogenases</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lymphoma</subject><subject>Lymphoma, Large B-Cell, Diffuse - metabolism</subject><subject>Lymphoma, Large B-Cell, Diffuse - pathology</subject><subject>Medicin och hälsovetenskap</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins - antagonists & inhibitors</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Peptide Elongation Factor G - antagonists & inhibitors</subject><subject>Peptide Elongation Factor G - genetics</subject><subject>Peptide Elongation Factor G - metabolism</subject><subject>Peptide Elongation Factor Tu - antagonists & inhibitors</subject><subject>Peptide Elongation Factor Tu - genetics</subject><subject>Peptide Elongation Factor Tu - metabolism</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Antigen, B-Cell</subject><subject>Ribosomal Proteins - antagonists & inhibitors</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Stem Cells</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Yeast</subject><issn>1350-9047</issn><issn>1476-5403</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp1kk1v1DAYhCMEoqVw44wiceFAtq_txI4vSKV8FKkSFzhbjmNvXJI42M5WK_48TnfbblE52fL7zNgeTZa9RrBCQOpT1bYrDIiuEKJPsmNUMlpUJZCnaU8qKDiU7Ch7EcIVAFDG6fPsCDNGa4TxcfbnkzVGez1GK_tcuTF628zRujF3Jo-dzgcbnerc2PqFiF6OoZc3wCRjdy23eXQ3YJj9xm4Sk4Rtcp2Dznvp1zr_WCjd93m_HabODTKRTdAxvMyeGdkH_Wq_nmQ_v3z-cX5RXH7_-u387LJQFUOxkLwiGGgNEhhGmLQGGkUJQZq3REmjgVCqmCEY1wAaEykbbKhsMdclNxU5yYqdb7jW09yIydtB-q1w0or90a-006ICVHFIPP8vP3nX3otuhSloAiWp66T9sNMmYNCtSsF62T-0eDAZbSfWbiMqzDkDngze7Q28-z3rEMVgwxKfHLWbg0A1rQmpEKYJffsPeuVmP6YoF4ogTikrE_V-RynvQvDa3D0GgVgaJFKDxNIgkRqU8DeHH7iDbytzkGYajWvtD259zPAv79zUrw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Norberg, Erik</creator><creator>Lako, Ana</creator><creator>Chen, Pei-Hsuan</creator><creator>Stanley, Illana A</creator><creator>Zhou, Feng</creator><creator>Ficarro, Scott B</creator><creator>Chapuy, Bjoern</creator><creator>Chen, Linfeng</creator><creator>Rodig, Scott</creator><creator>Shin, Donghyuk</creator><creator>Choi, Dong Wook</creator><creator>Lee, Sangho</creator><creator>Shipp, Margaret A</creator><creator>Marto, Jarrod A</creator><creator>Danial, Nika N</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20170201</creationdate><title>Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets</title><author>Norberg, Erik ; Lako, Ana ; Chen, Pei-Hsuan ; Stanley, Illana A ; Zhou, Feng ; Ficarro, Scott B ; Chapuy, Bjoern ; Chen, Linfeng ; Rodig, Scott ; Shin, Donghyuk ; Choi, Dong Wook ; Lee, Sangho ; Shipp, Margaret A ; Marto, Jarrod A ; Danial, Nika N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-a95320680a072123df0bc6331e9d3cafe0366c7f322800e23aab2f6ad29e49f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/89</topic><topic>631/45/607</topic><topic>631/67/2327</topic><topic>631/67/2329</topic><topic>82/29</topic><topic>82/58</topic><topic>82/80</topic><topic>82/81</topic><topic>96/34</topic><topic>Acetylcysteine - pharmacology</topic><topic>Amino Acid Motifs</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Survival - drug effects</topic><topic>Cytochrome</topic><topic>Dehydrogenases</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lymphoma</topic><topic>Lymphoma, Large B-Cell, Diffuse - metabolism</topic><topic>Lymphoma, Large B-Cell, Diffuse - pathology</topic><topic>Medicin och hälsovetenskap</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins - antagonists & inhibitors</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Peptide Elongation Factor G - antagonists & inhibitors</topic><topic>Peptide Elongation Factor G - genetics</topic><topic>Peptide Elongation Factor G - metabolism</topic><topic>Peptide Elongation Factor Tu - antagonists & inhibitors</topic><topic>Peptide Elongation Factor Tu - genetics</topic><topic>Peptide Elongation Factor Tu - metabolism</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Antigen, B-Cell</topic><topic>Ribosomal Proteins - antagonists & inhibitors</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Stem Cells</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norberg, Erik</creatorcontrib><creatorcontrib>Lako, Ana</creatorcontrib><creatorcontrib>Chen, Pei-Hsuan</creatorcontrib><creatorcontrib>Stanley, Illana A</creatorcontrib><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Ficarro, Scott B</creatorcontrib><creatorcontrib>Chapuy, Bjoern</creatorcontrib><creatorcontrib>Chen, Linfeng</creatorcontrib><creatorcontrib>Rodig, Scott</creatorcontrib><creatorcontrib>Shin, Donghyuk</creatorcontrib><creatorcontrib>Choi, Dong Wook</creatorcontrib><creatorcontrib>Lee, Sangho</creatorcontrib><creatorcontrib>Shipp, Margaret A</creatorcontrib><creatorcontrib>Marto, Jarrod A</creatorcontrib><creatorcontrib>Danial, Nika N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>CELL DEATH AND DIFFERENTIATION</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norberg, Erik</au><au>Lako, Ana</au><au>Chen, Pei-Hsuan</au><au>Stanley, Illana A</au><au>Zhou, Feng</au><au>Ficarro, Scott B</au><au>Chapuy, Bjoern</au><au>Chen, Linfeng</au><au>Rodig, Scott</au><au>Shin, Donghyuk</au><au>Choi, Dong Wook</au><au>Lee, Sangho</au><au>Shipp, Margaret A</au><au>Marto, Jarrod A</au><au>Danial, Nika N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets</atitle><jtitle>CELL DEATH AND DIFFERENTIATION</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>24</volume><issue>2</issue><spage>251</spage><epage>262</epage><pages>251-262</pages><issn>1350-9047</issn><issn>1476-5403</issn><eissn>1476-5403</eissn><abstract>Diffuse large B-cell lymphomas (DLBCLs) are a highly heterogeneous group of tumors in which subsets share molecular features revealed by gene expression profiles and metabolic fingerprints. While B-cell receptor (BCR)-dependent DLBCLs are glycolytic, OxPhos-DLBCLs rely on mitochondrial energy transduction and nutrient utilization pathways that provide pro-survival benefits independent of BCR signaling. Integral to these metabolic distinctions is elevated mitochondrial electron transport chain (ETC) activity in OxPhos-DLBCLs compared with BCR-DLBCLs, which is linked to greater protein abundance of ETC components. To gain insights into molecular determinants of the selective increase in ETC activity and dependence on mitochondrial energy metabolism in OxPhos-DLBCLs, we examined the mitochondrial translation pathway in charge of the synthesis of mitochondrial DNA encoded ETC subunits. Quantitative mass spectrometry identified increased expression of mitochondrial translation factors in OxPhos-DLBCL as compared with the BCR subtype. Biochemical and functional assays indicate that the mitochondrial translation pathway is required for increased ETC activity and mitochondrial energy reserves in OxPhos-DLBCL. Importantly, molecular depletion of several mitochondrial translation proteins using RNA interference or pharmacological perturbation of the mitochondrial translation pathway with the FDA-approved inhibitor tigecycline (Tigecyl) is selectively toxic to OxPhos-DLBCL cell lines and primary tumors. These findings provide additional molecular insights into the metabolic characteristics of OxPhos-DLBCLs, and mark the mitochondrial translation pathway as a potential therapeutic target in these tumors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27768122</pmid><doi>10.1038/cdd.2016.116</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | CELL DEATH AND DIFFERENTIATION, 2017-02, Vol.24 (2), p.251-262 |
issn | 1350-9047 1476-5403 1476-5403 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_501590 |
source | MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 13/89 631/45/607 631/67/2327 631/67/2329 82/29 82/58 82/80 82/81 96/34 Acetylcysteine - pharmacology Amino Acid Motifs Anti-Bacterial Agents - pharmacology Apoptosis Biochemistry Biology Biomedical and Life Sciences Cancer Cell Biology Cell Cycle Analysis Cell death Cell Survival - drug effects Cytochrome Dehydrogenases Electron Transport Chain Complex Proteins - genetics Electron Transport Chain Complex Proteins - metabolism Fatty acids Gene expression Humans Life Sciences Lymphoma Lymphoma, Large B-Cell, Diffuse - metabolism Lymphoma, Large B-Cell, Diffuse - pathology Medicin och hälsovetenskap Metabolism Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial DNA Mitochondrial Proteins - antagonists & inhibitors Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Original Paper Oxidation Oxidative Phosphorylation - drug effects Peptide Elongation Factor G - antagonists & inhibitors Peptide Elongation Factor G - genetics Peptide Elongation Factor G - metabolism Peptide Elongation Factor Tu - antagonists & inhibitors Peptide Elongation Factor Tu - genetics Peptide Elongation Factor Tu - metabolism Phosphorylation Proteins Reactive Oxygen Species - metabolism Receptors, Antigen, B-Cell Ribosomal Proteins - antagonists & inhibitors Ribosomal Proteins - genetics Ribosomal Proteins - metabolism RNA Interference RNA, Small Interfering - metabolism Signal Transduction - drug effects Stem Cells Tumor Cells, Cultured Tumors Yeast |
title | Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20contribution%20of%20the%20mitochondrial%20translation%20pathway%20to%20the%20survival%20of%20diffuse%20large%20B-cell%20lymphoma%20subsets&rft.jtitle=CELL%20DEATH%20AND%20DIFFERENTIATION&rft.au=Norberg,%20Erik&rft.date=2017-02-01&rft.volume=24&rft.issue=2&rft.spage=251&rft.epage=262&rft.pages=251-262&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2016.116&rft_dat=%3Cproquest_swepu%3E4311618151%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863196674&rft_id=info:pmid/27768122&rfr_iscdi=true |