The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells

The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of toxicology 2017-06, Vol.91 (6), p.2469-2489
Hauptverfasser: Cipriano, M., Correia, J. C., Camões, S. P., Oliveira, N. G., Cruz, P., Cruz, H., Castro, M., Ruas, J. L., Santos, J. M., Miranda, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2489
container_issue 6
container_start_page 2469
container_title Archives of toxicology
container_volume 91
creator Cipriano, M.
Correia, J. C.
Camões, S. P.
Oliveira, N. G.
Cruz, P.
Cruz, H.
Castro, M.
Ruas, J. L.
Santos, J. M.
Miranda, J. P.
description The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA ; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.
doi_str_mv 10.1007/s00204-016-1901-x
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_500674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899720901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5d86dc99427fc6d9c849d38b34628ff27f81a2dbac17bac20bdf0fb00c190a503</originalsourceid><addsrcrecordid>eNp1kcFu3CAQhlHVqNkkfYBeKqSeaQfsNeZYRW1SKVIv6RnZMGRJbOMCbnffoQ9dVt5EvfQCo-H7f2B-Qt5x-MgB5KcEIKBmwBvGFXC2f0U2vK4EA1m1r8kGqhrYVjb8nFyk9AjARauqN-RcSAVK1nxD_tzvkMYwIA2O4uwfcMLsDR2D9c5jTNRPFPcZJ4uWmmXIS8R0hN0ymezD1A10h3OXgzlkZIN_QmpwGBK1GP2vInIxjHS3jN1EJyx8LooRE05mdxhLnTKOq-SKnLluSPj2tF-SH1-_3F_fsrvvN9-uP98xU3PIbGvbxhqlaiGdaawyba1s1fZV3YjWudJteSds3xkuyyKgtw5cD2DKlLotVJeErb7pN85Lr-foxy4edOi8PrWeSoV6C9DIuvAfVn6O4eeCKevHsMTy86R5q5QUUKZfKL5SJoaUIroXXw76mJde89IlL33MS--L5v3JeelHtC-K54AKIE5PLUfTA8Z_rv6v618NkaS3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899720901</pqid></control><display><type>article</type><title>The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Cipriano, M. ; Correia, J. C. ; Camões, S. P. ; Oliveira, N. G. ; Cruz, P. ; Cruz, H. ; Castro, M. ; Ruas, J. L. ; Santos, J. M. ; Miranda, J. P.</creator><creatorcontrib>Cipriano, M. ; Correia, J. C. ; Camões, S. P. ; Oliveira, N. G. ; Cruz, P. ; Cruz, H. ; Castro, M. ; Ruas, J. L. ; Santos, J. M. ; Miranda, J. P.</creatorcontrib><description>The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA ; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.</description><identifier>ISSN: 0340-5761</identifier><identifier>EISSN: 1432-0738</identifier><identifier>DOI: 10.1007/s00204-016-1901-x</identifier><identifier>PMID: 27909741</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Albumin ; Ammonia ; Azacitidine - pharmacology ; Azacytidine ; Bioinformatics ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cell culture ; Cell Culture Techniques ; Cell Differentiation - drug effects ; Cell morphology ; Cytochrome P450 ; Cytology ; Differentiation ; Dimethyl sulfoxide ; Dimethyl Sulfoxide - pharmacology ; Drug discovery ; Drug Evaluation, Preclinical - methods ; Drug screening ; Embryogenesis ; Embryonic growth stage ; Endoderm ; Environmental Health ; Enzymatic activity ; Epigenesis, Genetic - drug effects ; Epigenetics ; Fibroblast growth factor 2 ; Fibroblast growth factor 4 ; Foregut ; Gene expression ; Glycogen ; Hepatocyte nuclear factor 4 ; Hepatocytes ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Humans ; Hydroxamic Acids - pharmacology ; In vitro methods and tests ; Infant, Newborn ; Liver ; Material requirements planning ; Maturation ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchyme ; Models, Biological ; Neonates ; Occupational Medicine/Industrial Medicine ; Pharmacology/Toxicology ; Protocols ; Stem cells ; Toxicology ; Transcription ; Umbilical cord</subject><ispartof>Archives of toxicology, 2017-06, Vol.91 (6), p.2469-2489</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Archives of Toxicology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5d86dc99427fc6d9c849d38b34628ff27f81a2dbac17bac20bdf0fb00c190a503</citedby><cites>FETCH-LOGICAL-c410t-5d86dc99427fc6d9c849d38b34628ff27f81a2dbac17bac20bdf0fb00c190a503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00204-016-1901-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00204-016-1901-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27909741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135835812$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cipriano, M.</creatorcontrib><creatorcontrib>Correia, J. C.</creatorcontrib><creatorcontrib>Camões, S. P.</creatorcontrib><creatorcontrib>Oliveira, N. G.</creatorcontrib><creatorcontrib>Cruz, P.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Castro, M.</creatorcontrib><creatorcontrib>Ruas, J. L.</creatorcontrib><creatorcontrib>Santos, J. M.</creatorcontrib><creatorcontrib>Miranda, J. P.</creatorcontrib><title>The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells</title><title>Archives of toxicology</title><addtitle>Arch Toxicol</addtitle><addtitle>Arch Toxicol</addtitle><description>The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA ; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.</description><subject>Albumin</subject><subject>Ammonia</subject><subject>Azacitidine - pharmacology</subject><subject>Azacytidine</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell morphology</subject><subject>Cytochrome P450</subject><subject>Cytology</subject><subject>Differentiation</subject><subject>Dimethyl sulfoxide</subject><subject>Dimethyl Sulfoxide - pharmacology</subject><subject>Drug discovery</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Drug screening</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Endoderm</subject><subject>Environmental Health</subject><subject>Enzymatic activity</subject><subject>Epigenesis, Genetic - drug effects</subject><subject>Epigenetics</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblast growth factor 4</subject><subject>Foregut</subject><subject>Gene expression</subject><subject>Glycogen</subject><subject>Hepatocyte nuclear factor 4</subject><subject>Hepatocytes</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>In vitro methods and tests</subject><subject>Infant, Newborn</subject><subject>Liver</subject><subject>Material requirements planning</subject><subject>Maturation</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchyme</subject><subject>Models, Biological</subject><subject>Neonates</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Pharmacology/Toxicology</subject><subject>Protocols</subject><subject>Stem cells</subject><subject>Toxicology</subject><subject>Transcription</subject><subject>Umbilical cord</subject><issn>0340-5761</issn><issn>1432-0738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFu3CAQhlHVqNkkfYBeKqSeaQfsNeZYRW1SKVIv6RnZMGRJbOMCbnffoQ9dVt5EvfQCo-H7f2B-Qt5x-MgB5KcEIKBmwBvGFXC2f0U2vK4EA1m1r8kGqhrYVjb8nFyk9AjARauqN-RcSAVK1nxD_tzvkMYwIA2O4uwfcMLsDR2D9c5jTNRPFPcZJ4uWmmXIS8R0hN0ymezD1A10h3OXgzlkZIN_QmpwGBK1GP2vInIxjHS3jN1EJyx8LooRE05mdxhLnTKOq-SKnLluSPj2tF-SH1-_3F_fsrvvN9-uP98xU3PIbGvbxhqlaiGdaawyba1s1fZV3YjWudJteSds3xkuyyKgtw5cD2DKlLotVJeErb7pN85Lr-foxy4edOi8PrWeSoV6C9DIuvAfVn6O4eeCKevHsMTy86R5q5QUUKZfKL5SJoaUIroXXw76mJde89IlL33MS--L5v3JeelHtC-K54AKIE5PLUfTA8Z_rv6v618NkaS3</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Cipriano, M.</creator><creator>Correia, J. C.</creator><creator>Camões, S. P.</creator><creator>Oliveira, N. G.</creator><creator>Cruz, P.</creator><creator>Cruz, H.</creator><creator>Castro, M.</creator><creator>Ruas, J. L.</creator><creator>Santos, J. M.</creator><creator>Miranda, J. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20170601</creationdate><title>The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells</title><author>Cipriano, M. ; Correia, J. C. ; Camões, S. P. ; Oliveira, N. G. ; Cruz, P. ; Cruz, H. ; Castro, M. ; Ruas, J. L. ; Santos, J. M. ; Miranda, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5d86dc99427fc6d9c849d38b34628ff27f81a2dbac17bac20bdf0fb00c190a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Albumin</topic><topic>Ammonia</topic><topic>Azacitidine - pharmacology</topic><topic>Azacytidine</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell morphology</topic><topic>Cytochrome P450</topic><topic>Cytology</topic><topic>Differentiation</topic><topic>Dimethyl sulfoxide</topic><topic>Dimethyl Sulfoxide - pharmacology</topic><topic>Drug discovery</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Drug screening</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Endoderm</topic><topic>Environmental Health</topic><topic>Enzymatic activity</topic><topic>Epigenesis, Genetic - drug effects</topic><topic>Epigenetics</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblast growth factor 4</topic><topic>Foregut</topic><topic>Gene expression</topic><topic>Glycogen</topic><topic>Hepatocyte nuclear factor 4</topic><topic>Hepatocytes</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>In vitro methods and tests</topic><topic>Infant, Newborn</topic><topic>Liver</topic><topic>Material requirements planning</topic><topic>Maturation</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchyme</topic><topic>Models, Biological</topic><topic>Neonates</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Pharmacology/Toxicology</topic><topic>Protocols</topic><topic>Stem cells</topic><topic>Toxicology</topic><topic>Transcription</topic><topic>Umbilical cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cipriano, M.</creatorcontrib><creatorcontrib>Correia, J. C.</creatorcontrib><creatorcontrib>Camões, S. P.</creatorcontrib><creatorcontrib>Oliveira, N. G.</creatorcontrib><creatorcontrib>Cruz, P.</creatorcontrib><creatorcontrib>Cruz, H.</creatorcontrib><creatorcontrib>Castro, M.</creatorcontrib><creatorcontrib>Ruas, J. L.</creatorcontrib><creatorcontrib>Santos, J. M.</creatorcontrib><creatorcontrib>Miranda, J. P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Archives of toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cipriano, M.</au><au>Correia, J. C.</au><au>Camões, S. P.</au><au>Oliveira, N. G.</au><au>Cruz, P.</au><au>Cruz, H.</au><au>Castro, M.</au><au>Ruas, J. L.</au><au>Santos, J. M.</au><au>Miranda, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells</atitle><jtitle>Archives of toxicology</jtitle><stitle>Arch Toxicol</stitle><addtitle>Arch Toxicol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>91</volume><issue>6</issue><spage>2469</spage><epage>2489</epage><pages>2469-2489</pages><issn>0340-5761</issn><eissn>1432-0738</eissn><abstract>The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA ; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27909741</pmid><doi>10.1007/s00204-016-1901-x</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-5761
ispartof Archives of toxicology, 2017-06, Vol.91 (6), p.2469-2489
issn 0340-5761
1432-0738
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_500674
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Albumin
Ammonia
Azacitidine - pharmacology
Azacytidine
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cell culture
Cell Culture Techniques
Cell Differentiation - drug effects
Cell morphology
Cytochrome P450
Cytology
Differentiation
Dimethyl sulfoxide
Dimethyl Sulfoxide - pharmacology
Drug discovery
Drug Evaluation, Preclinical - methods
Drug screening
Embryogenesis
Embryonic growth stage
Endoderm
Environmental Health
Enzymatic activity
Epigenesis, Genetic - drug effects
Epigenetics
Fibroblast growth factor 2
Fibroblast growth factor 4
Foregut
Gene expression
Glycogen
Hepatocyte nuclear factor 4
Hepatocytes
Hepatocytes - drug effects
Hepatocytes - metabolism
Humans
Hydroxamic Acids - pharmacology
In vitro methods and tests
Infant, Newborn
Liver
Material requirements planning
Maturation
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchyme
Models, Biological
Neonates
Occupational Medicine/Industrial Medicine
Pharmacology/Toxicology
Protocols
Stem cells
Toxicology
Transcription
Umbilical cord
title The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20epigenetic%20modifiers%20in%20extended%20cultures%20of%20functional%20hepatocyte-like%20cells%20derived%20from%20human%20neonatal%20mesenchymal%20stem%20cells&rft.jtitle=Archives%20of%20toxicology&rft.au=Cipriano,%20M.&rft.date=2017-06-01&rft.volume=91&rft.issue=6&rft.spage=2469&rft.epage=2489&rft.pages=2469-2489&rft.issn=0340-5761&rft.eissn=1432-0738&rft_id=info:doi/10.1007/s00204-016-1901-x&rft_dat=%3Cproquest_swepu%3E1899720901%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899720901&rft_id=info:pmid/27909741&rfr_iscdi=true