Flexible parametric modelling of the cause‐specific cumulative incidence function
Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the pro...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2017-04, Vol.36 (9), p.1429-1446 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1446 |
---|---|
container_issue | 9 |
container_start_page | 1429 |
container_title | Statistics in medicine |
container_volume | 36 |
creator | Lambert, Paul C. Wilkes, Sally R. Crowther, Michael J. |
description | Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow‐up time, accounting for the fact that some individuals may have a competing event. When modelling the cause‐specific CIF, the most common model is a semi‐parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause‐specific CIF where the effect of follow‐up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause‐specific CIF with the important advantage that the approach is easily extended to model time‐dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time‐dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause‐specific CIF and those obtained from a semi‐parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time‐dependent effects. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.7208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_500207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321363861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4718-8dc491aa07c0662138ac5ae28e1186f8f66c55ddfd4c205850ed4178cdb0733d3</originalsourceid><addsrcrecordid>eNp1kd1KHDEYhkOx1O224BWUAU88me2XzORnDouoFbb0QHscssk3NXb-Opm4euYleI1eiVFXFwSPEsLzvoTnJWSPwoICsO_BtwvJQH0gMwqVzIFxtUNmwKTMhaR8l3wO4RKAUs7kJ7LLFIASZTUjZ8cNXvtVg9lgRtPiNHqbtb3DpvHd36yvs-kCM2tiwPvbuzCg9XUibGxjYyZ_hZnvrHfYWczq2NnJ990X8rE2TcCvm3NO_hwfnR_-zJe_T04PfyxzW0qqcuVsWVFjQFoQgtFCGcsNMoWUKlGrWgjLuXO1Ky0DrjigK6lU1q1AFoUr5iR_7g1rHOJKD6NvzXije-P15ulfuqHmyVGKzEn1Lj-MvduGXoK04AIKKIqUPXjOJvB_xDDp1gebLJkO-xg0VcmsYqwUCd1_g172ceySiUQpVlUlr8ptoR37EEasX79DQT-OqtOo-nHUhH7bFMZVi-4VfFlxK2LtG7x5t0ifnf56KnwAMsetDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882994594</pqid></control><display><type>article</type><title>Flexible parametric modelling of the cause‐specific cumulative incidence function</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Access via Wiley Online Library</source><creator>Lambert, Paul C. ; Wilkes, Sally R. ; Crowther, Michael J.</creator><creatorcontrib>Lambert, Paul C. ; Wilkes, Sally R. ; Crowther, Michael J.</creatorcontrib><description>Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow‐up time, accounting for the fact that some individuals may have a competing event. When modelling the cause‐specific CIF, the most common model is a semi‐parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause‐specific CIF where the effect of follow‐up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause‐specific CIF with the important advantage that the approach is easily extended to model time‐dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time‐dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause‐specific CIF and those obtained from a semi‐parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time‐dependent effects. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7208</identifier><identifier>PMID: 28008649</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Causality ; competing risks ; cumulative incidence function ; Data Interpretation, Statistical ; flexible parametric models ; Humans ; Incidence ; Medicin och hälsovetenskap ; Models, Statistical ; Proportional Hazards Models ; Risk Factors ; Survival Analysis ; Time Factors</subject><ispartof>Statistics in medicine, 2017-04, Vol.36 (9), p.1429-1446</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4718-8dc491aa07c0662138ac5ae28e1186f8f66c55ddfd4c205850ed4178cdb0733d3</citedby><cites>FETCH-LOGICAL-c4718-8dc491aa07c0662138ac5ae28e1186f8f66c55ddfd4c205850ed4178cdb0733d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,553,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28008649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135603033$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambert, Paul C.</creatorcontrib><creatorcontrib>Wilkes, Sally R.</creatorcontrib><creatorcontrib>Crowther, Michael J.</creatorcontrib><title>Flexible parametric modelling of the cause‐specific cumulative incidence function</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow‐up time, accounting for the fact that some individuals may have a competing event. When modelling the cause‐specific CIF, the most common model is a semi‐parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause‐specific CIF where the effect of follow‐up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause‐specific CIF with the important advantage that the approach is easily extended to model time‐dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time‐dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause‐specific CIF and those obtained from a semi‐parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time‐dependent effects. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Causality</subject><subject>competing risks</subject><subject>cumulative incidence function</subject><subject>Data Interpretation, Statistical</subject><subject>flexible parametric models</subject><subject>Humans</subject><subject>Incidence</subject><subject>Medicin och hälsovetenskap</subject><subject>Models, Statistical</subject><subject>Proportional Hazards Models</subject><subject>Risk Factors</subject><subject>Survival Analysis</subject><subject>Time Factors</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kd1KHDEYhkOx1O224BWUAU88me2XzORnDouoFbb0QHscssk3NXb-Opm4euYleI1eiVFXFwSPEsLzvoTnJWSPwoICsO_BtwvJQH0gMwqVzIFxtUNmwKTMhaR8l3wO4RKAUs7kJ7LLFIASZTUjZ8cNXvtVg9lgRtPiNHqbtb3DpvHd36yvs-kCM2tiwPvbuzCg9XUibGxjYyZ_hZnvrHfYWczq2NnJ990X8rE2TcCvm3NO_hwfnR_-zJe_T04PfyxzW0qqcuVsWVFjQFoQgtFCGcsNMoWUKlGrWgjLuXO1Ky0DrjigK6lU1q1AFoUr5iR_7g1rHOJKD6NvzXije-P15ulfuqHmyVGKzEn1Lj-MvduGXoK04AIKKIqUPXjOJvB_xDDp1gebLJkO-xg0VcmsYqwUCd1_g172ceySiUQpVlUlr8ptoR37EEasX79DQT-OqtOo-nHUhH7bFMZVi-4VfFlxK2LtG7x5t0ifnf56KnwAMsetDg</recordid><startdate>20170430</startdate><enddate>20170430</enddate><creator>Lambert, Paul C.</creator><creator>Wilkes, Sally R.</creator><creator>Crowther, Michael J.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20170430</creationdate><title>Flexible parametric modelling of the cause‐specific cumulative incidence function</title><author>Lambert, Paul C. ; Wilkes, Sally R. ; Crowther, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4718-8dc491aa07c0662138ac5ae28e1186f8f66c55ddfd4c205850ed4178cdb0733d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Causality</topic><topic>competing risks</topic><topic>cumulative incidence function</topic><topic>Data Interpretation, Statistical</topic><topic>flexible parametric models</topic><topic>Humans</topic><topic>Incidence</topic><topic>Medicin och hälsovetenskap</topic><topic>Models, Statistical</topic><topic>Proportional Hazards Models</topic><topic>Risk Factors</topic><topic>Survival Analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Paul C.</creatorcontrib><creatorcontrib>Wilkes, Sally R.</creatorcontrib><creatorcontrib>Crowther, Michael J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Paul C.</au><au>Wilkes, Sally R.</au><au>Crowther, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible parametric modelling of the cause‐specific cumulative incidence function</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2017-04-30</date><risdate>2017</risdate><volume>36</volume><issue>9</issue><spage>1429</spage><epage>1446</epage><pages>1429-1446</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow‐up time, accounting for the fact that some individuals may have a competing event. When modelling the cause‐specific CIF, the most common model is a semi‐parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause‐specific CIF where the effect of follow‐up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause‐specific CIF with the important advantage that the approach is easily extended to model time‐dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time‐dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause‐specific CIF and those obtained from a semi‐parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time‐dependent effects. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>28008649</pmid><doi>10.1002/sim.7208</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2017-04, Vol.36 (9), p.1429-1446 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_500207 |
source | MEDLINE; SWEPUB Freely available online; Access via Wiley Online Library |
subjects | Causality competing risks cumulative incidence function Data Interpretation, Statistical flexible parametric models Humans Incidence Medicin och hälsovetenskap Models, Statistical Proportional Hazards Models Risk Factors Survival Analysis Time Factors |
title | Flexible parametric modelling of the cause‐specific cumulative incidence function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20parametric%20modelling%20of%20the%20cause%E2%80%90specific%20cumulative%20incidence%20function&rft.jtitle=Statistics%20in%20medicine&rft.au=Lambert,%20Paul%20C.&rft.date=2017-04-30&rft.volume=36&rft.issue=9&rft.spage=1429&rft.epage=1446&rft.pages=1429-1446&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.7208&rft_dat=%3Cproquest_swepu%3E4321363861%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882994594&rft_id=info:pmid/28008649&rfr_iscdi=true |