Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies

Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2017-01, Vol.18 (1), p.24-24, Article 24
Hauptverfasser: Hattab, Mohammad W, Shabalin, Andrey A, Clark, Shaunna L, Zhao, Min, Kumar, Gaurav, Chan, Robin F, Xie, Lin Ying, Jansen, Rick, Han, Laura K M, Magnusson, Patrik K E, van Grootheest, Gerard, Hultman, Christina M, Penninx, Brenda W J H, Aberg, Karolina A, van den Oord, Edwin J C G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 24
container_title Genome Biology
container_volume 18
creator Hattab, Mohammad W
Shabalin, Andrey A
Clark, Shaunna L
Zhao, Min
Kumar, Gaurav
Chan, Robin F
Xie, Lin Ying
Jansen, Rick
Han, Laura K M
Magnusson, Patrik K E
van Grootheest, Gerard
Hultman, Christina M
Penninx, Brenda W J H
Aberg, Karolina A
van den Oord, Edwin J C G
description Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.Please see related Correspondence article: https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7 and related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.
doi_str_mv 10.1186/s13059-017-1148-8
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_499426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A480609816</galeid><sourcerecordid>A480609816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-5354a31582aaf0858b3f558f64f4f201ece0c92ec9ffa923b55494be1707621a3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqXwAGyQJTawSPFvYrOoNBr-KipgARI7y_FcT12SONhJYZ6CV8aZmVYdNsiLWNffPbk-PkXxlOBTQmT1KhGGhSoxqUtCuCzlveKY8JqXdYW_37-zPyoepXSFMVGcVg-LIyoJq6mix8WfZYgR7Oj7NXIhIgttW46bARA4l-sJ-R69-bRAHYyXm9aMPvQojdPKQ3qNIjiI0FsoG5NgtYXCCoVpHCBmuS6h3AL9iK5N9KZpAZlhiMHYS9gqQzf46K1pbzQfFw-caRM82X9Pim_v3n5dfigvPr8_Xy4uSlsxNpaCCW4YEZIa47AUsmFOCOkq7rijmIAFbBUFq5wzirJGCK54A6TGdUWJYSdFudNNv2CYGj1E35m40cF4vS_9yDvQXM2eZf5sx-eTDlY23yma9qDt8KT3l3odrrWgkspKZIEXe4EYfk6QRt35NLtteghT0hRjPM-I1X_R_PSMEsm3qs__Qa_CFPvsnKYU10rg_P9Mne6otWlB-96FPKLNawWdt6EH53N9wSWusJJkvu3Lg4bMjPB7XJspJf3xy_khS3asjSGlnIhbUwjWc0z1LqY6x1TPMdXzQM_uunnbcZNL9hfMueVN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207950528</pqid></control><display><type>article</type><title>Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hattab, Mohammad W ; Shabalin, Andrey A ; Clark, Shaunna L ; Zhao, Min ; Kumar, Gaurav ; Chan, Robin F ; Xie, Lin Ying ; Jansen, Rick ; Han, Laura K M ; Magnusson, Patrik K E ; van Grootheest, Gerard ; Hultman, Christina M ; Penninx, Brenda W J H ; Aberg, Karolina A ; van den Oord, Edwin J C G</creator><creatorcontrib>Hattab, Mohammad W ; Shabalin, Andrey A ; Clark, Shaunna L ; Zhao, Min ; Kumar, Gaurav ; Chan, Robin F ; Xie, Lin Ying ; Jansen, Rick ; Han, Laura K M ; Magnusson, Patrik K E ; van Grootheest, Gerard ; Hultman, Christina M ; Penninx, Brenda W J H ; Aberg, Karolina A ; van den Oord, Edwin J C G</creatorcontrib><description>Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.Please see related Correspondence article: https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7 and related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1474-7596</identifier><identifier>EISSN: 1474-760X</identifier><identifier>DOI: 10.1186/s13059-017-1148-8</identifier><identifier>PMID: 28137292</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Bioinformatics ; Correspondence ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Gene expression ; Genomes ; Laboratories ; Mental depression ; Methods ; Methylation ; model validation ; Principal components analysis ; risk ; Schizophrenia ; simulation models ; Studies ; Transcription (Genetics) ; Variables</subject><ispartof>Genome Biology, 2017-01, Vol.18 (1), p.24-24, Article 24</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-5354a31582aaf0858b3f558f64f4f201ece0c92ec9ffa923b55494be1707621a3</citedby><cites>FETCH-LOGICAL-c633t-5354a31582aaf0858b3f558f64f4f201ece0c92ec9ffa923b55494be1707621a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282865/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282865/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28137292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135249748$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hattab, Mohammad W</creatorcontrib><creatorcontrib>Shabalin, Andrey A</creatorcontrib><creatorcontrib>Clark, Shaunna L</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Chan, Robin F</creatorcontrib><creatorcontrib>Xie, Lin Ying</creatorcontrib><creatorcontrib>Jansen, Rick</creatorcontrib><creatorcontrib>Han, Laura K M</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>van Grootheest, Gerard</creatorcontrib><creatorcontrib>Hultman, Christina M</creatorcontrib><creatorcontrib>Penninx, Brenda W J H</creatorcontrib><creatorcontrib>Aberg, Karolina A</creatorcontrib><creatorcontrib>van den Oord, Edwin J C G</creatorcontrib><title>Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies</title><title>Genome Biology</title><addtitle>Genome Biol</addtitle><description>Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.Please see related Correspondence article: https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7 and related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.</description><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Correspondence</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Laboratories</subject><subject>Mental depression</subject><subject>Methods</subject><subject>Methylation</subject><subject>model validation</subject><subject>Principal components analysis</subject><subject>risk</subject><subject>Schizophrenia</subject><subject>simulation models</subject><subject>Studies</subject><subject>Transcription (Genetics)</subject><subject>Variables</subject><issn>1474-760X</issn><issn>1474-7596</issn><issn>1474-760X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>KPI</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNqFks1u1DAUhSMEoqXwAGyQJTawSPFvYrOoNBr-KipgARI7y_FcT12SONhJYZ6CV8aZmVYdNsiLWNffPbk-PkXxlOBTQmT1KhGGhSoxqUtCuCzlveKY8JqXdYW_37-zPyoepXSFMVGcVg-LIyoJq6mix8WfZYgR7Oj7NXIhIgttW46bARA4l-sJ-R69-bRAHYyXm9aMPvQojdPKQ3qNIjiI0FsoG5NgtYXCCoVpHCBmuS6h3AL9iK5N9KZpAZlhiMHYS9gqQzf46K1pbzQfFw-caRM82X9Pim_v3n5dfigvPr8_Xy4uSlsxNpaCCW4YEZIa47AUsmFOCOkq7rijmIAFbBUFq5wzirJGCK54A6TGdUWJYSdFudNNv2CYGj1E35m40cF4vS_9yDvQXM2eZf5sx-eTDlY23yma9qDt8KT3l3odrrWgkspKZIEXe4EYfk6QRt35NLtteghT0hRjPM-I1X_R_PSMEsm3qs__Qa_CFPvsnKYU10rg_P9Mne6otWlB-96FPKLNawWdt6EH53N9wSWusJJkvu3Lg4bMjPB7XJspJf3xy_khS3asjSGlnIhbUwjWc0z1LqY6x1TPMdXzQM_uunnbcZNL9hfMueVN</recordid><startdate>20170130</startdate><enddate>20170130</enddate><creator>Hattab, Mohammad W</creator><creator>Shabalin, Andrey A</creator><creator>Clark, Shaunna L</creator><creator>Zhao, Min</creator><creator>Kumar, Gaurav</creator><creator>Chan, Robin F</creator><creator>Xie, Lin Ying</creator><creator>Jansen, Rick</creator><creator>Han, Laura K M</creator><creator>Magnusson, Patrik K E</creator><creator>van Grootheest, Gerard</creator><creator>Hultman, Christina M</creator><creator>Penninx, Brenda W J H</creator><creator>Aberg, Karolina A</creator><creator>van den Oord, Edwin J C G</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>KPI</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20170130</creationdate><title>Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies</title><author>Hattab, Mohammad W ; Shabalin, Andrey A ; Clark, Shaunna L ; Zhao, Min ; Kumar, Gaurav ; Chan, Robin F ; Xie, Lin Ying ; Jansen, Rick ; Han, Laura K M ; Magnusson, Patrik K E ; van Grootheest, Gerard ; Hultman, Christina M ; Penninx, Brenda W J H ; Aberg, Karolina A ; van den Oord, Edwin J C G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-5354a31582aaf0858b3f558f64f4f201ece0c92ec9ffa923b55494be1707621a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Correspondence</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Laboratories</topic><topic>Mental depression</topic><topic>Methods</topic><topic>Methylation</topic><topic>model validation</topic><topic>Principal components analysis</topic><topic>risk</topic><topic>Schizophrenia</topic><topic>simulation models</topic><topic>Studies</topic><topic>Transcription (Genetics)</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hattab, Mohammad W</creatorcontrib><creatorcontrib>Shabalin, Andrey A</creatorcontrib><creatorcontrib>Clark, Shaunna L</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Kumar, Gaurav</creatorcontrib><creatorcontrib>Chan, Robin F</creatorcontrib><creatorcontrib>Xie, Lin Ying</creatorcontrib><creatorcontrib>Jansen, Rick</creatorcontrib><creatorcontrib>Han, Laura K M</creatorcontrib><creatorcontrib>Magnusson, Patrik K E</creatorcontrib><creatorcontrib>van Grootheest, Gerard</creatorcontrib><creatorcontrib>Hultman, Christina M</creatorcontrib><creatorcontrib>Penninx, Brenda W J H</creatorcontrib><creatorcontrib>Aberg, Karolina A</creatorcontrib><creatorcontrib>van den Oord, Edwin J C G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Global Issues</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Genome Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hattab, Mohammad W</au><au>Shabalin, Andrey A</au><au>Clark, Shaunna L</au><au>Zhao, Min</au><au>Kumar, Gaurav</au><au>Chan, Robin F</au><au>Xie, Lin Ying</au><au>Jansen, Rick</au><au>Han, Laura K M</au><au>Magnusson, Patrik K E</au><au>van Grootheest, Gerard</au><au>Hultman, Christina M</au><au>Penninx, Brenda W J H</au><au>Aberg, Karolina A</au><au>van den Oord, Edwin J C G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies</atitle><jtitle>Genome Biology</jtitle><addtitle>Genome Biol</addtitle><date>2017-01-30</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>24</spage><epage>24</epage><pages>24-24</pages><artnum>24</artnum><issn>1474-760X</issn><issn>1474-7596</issn><eissn>1474-760X</eissn><abstract>Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.Please see related Correspondence article: https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7 and related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28137292</pmid><doi>10.1186/s13059-017-1148-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-760X
ispartof Genome Biology, 2017-01, Vol.18 (1), p.24-24, Article 24
issn 1474-760X
1474-7596
1474-760X
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_499426
source DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Bioinformatics
Correspondence
Deoxyribonucleic acid
DNA
DNA methylation
Gene expression
Genomes
Laboratories
Mental depression
Methods
Methylation
model validation
Principal components analysis
risk
Schizophrenia
simulation models
Studies
Transcription (Genetics)
Variables
title Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20for%20cell-type%20effects%20in%20DNA%20methylation%20studies:%20reference-based%20method%20outperforms%20latent%20variable%20approaches%20in%20empirical%20studies&rft.jtitle=Genome%20Biology&rft.au=Hattab,%20Mohammad%20W&rft.date=2017-01-30&rft.volume=18&rft.issue=1&rft.spage=24&rft.epage=24&rft.pages=24-24&rft.artnum=24&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/s13059-017-1148-8&rft_dat=%3Cgale_swepu%3EA480609816%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207950528&rft_id=info:pmid/28137292&rft_galeid=A480609816&rfr_iscdi=true