Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix depo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2018-03, Vol.173 (1), p.153-165.e22
Hauptverfasser: Dias, David Oliveira, Kim, Hoseok, Holl, Daniel, Werne Solnestam, Beata, Lundeberg, Joakim, Carlén, Marie, Göritz, Christian, Frisén, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165.e22
container_issue 1
container_start_page 153
container_title Cell
container_volume 173
creator Dias, David Oliveira
Kim, Hoseok
Holl, Daniel
Werne Solnestam, Beata
Lundeberg, Joakim
Carlén, Marie
Göritz, Christian
Frisén, Jonas
description CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury. [Display omitted] •Inhibition of pericyte proliferation reduces fibrotic scar tissue following injury•Attenuated pericyte-derived scarring facilitates motor axon regeneration•Regenerated axons functionally re-integrate into the local spinal circuitry•Attenuated pericyte-derived scarring improves sensorimotor recovery Attenuation of fibrotic tissue generation by a subset of pericytes promotes regeneration of serotonergic and corticospinal tract axons and improves functional recovery after spinal cord injury.
doi_str_mv 10.1016/j.cell.2018.02.004
format Article
fullrecord <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_490056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741830148X</els_id><sourcerecordid>29502968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-6b61bdf7bb92c10986e2eebcd5d88d55a31016b2e4e180f6f120d5d8127b7cd83</originalsourceid><addsrcrecordid>eNp9kctu2zAQRYkiQeOk_YEuCv2AlCElPgQUBQLnCSRIYbdrQiJHKV1ZNCjZgf8-VJznollxwLnnDoeXkG8UMgpUHC8yg22bMaAqA5YBFJ_IhEIp04JKtkcmACVLlZDFATns-wUAKM75Z3LASg6sFGpCbmZo18Z1d8kvDM5sB0xPY7FBm8xNFcJjJ_ilH7BPZmj8BsM2qZoBQzJfua5qk6kPNrnqFuuw_UL2m6rt8evTeUT-nJ_9nl6m17cXV9OT69TwIh9SUQta20bWdclMfLASyBBrY7lVynJe5eN-NcMCqYJGNJTB2KNM1tJYlR-RdOfb3-NqXetVcMsqbLWvnH66-hcr1EUJwEXUl__Vr4K3r9AzSHOpRAEij-zPHRsFS7QGuyFU7XuLd53O_dV3fqO5klTSMhqwnYEJvu8DNi8sBT0uqhd6DFKPQWpgOgYZoe9vp74gz8lFwY-dAOM_bxwG3RuHnUHrAppBW-8-8n8A5QiyxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dias, David Oliveira ; Kim, Hoseok ; Holl, Daniel ; Werne Solnestam, Beata ; Lundeberg, Joakim ; Carlén, Marie ; Göritz, Christian ; Frisén, Jonas</creator><creatorcontrib>Dias, David Oliveira ; Kim, Hoseok ; Holl, Daniel ; Werne Solnestam, Beata ; Lundeberg, Joakim ; Carlén, Marie ; Göritz, Christian ; Frisén, Jonas</creatorcontrib><description>CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury. [Display omitted] •Inhibition of pericyte proliferation reduces fibrotic scar tissue following injury•Attenuated pericyte-derived scarring facilitates motor axon regeneration•Regenerated axons functionally re-integrate into the local spinal circuitry•Attenuated pericyte-derived scarring improves sensorimotor recovery Attenuation of fibrotic tissue generation by a subset of pericytes promotes regeneration of serotonergic and corticospinal tract axons and improves functional recovery after spinal cord injury.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2018.02.004</identifier><identifier>PMID: 29502968</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; axon regeneration ; Axons - physiology ; Axons - radiation effects ; Cicatrix - pathology ; Disease Models, Animal ; Evoked Potentials - radiation effects ; Extracellular Matrix - metabolism ; Fibrosis ; Light ; Medicin och hälsovetenskap ; Mice ; Mice, Transgenic ; optogenetics ; pericyte ; Pericytes - cytology ; Pericytes - metabolism ; Photic Stimulation ; Pyramidal Tracts - physiology ; Receptor, Platelet-Derived Growth Factor beta - genetics ; Receptor, Platelet-Derived Growth Factor beta - metabolism ; Recovery of Function ; Regeneration ; scar ; Sensorimotor Cortex - physiology ; sensorimotor functional recovery ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - physiopathology ; spinal cord injury</subject><ispartof>Cell, 2018-03, Vol.173 (1), p.153-165.e22</ispartof><rights>2018 The Author(s)</rights><rights>Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-6b61bdf7bb92c10986e2eebcd5d88d55a31016b2e4e180f6f120d5d8127b7cd83</citedby><cites>FETCH-LOGICAL-c543t-6b61bdf7bb92c10986e2eebcd5d88d55a31016b2e4e180f6f120d5d8127b7cd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2018.02.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29502968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:137864063$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dias, David Oliveira</creatorcontrib><creatorcontrib>Kim, Hoseok</creatorcontrib><creatorcontrib>Holl, Daniel</creatorcontrib><creatorcontrib>Werne Solnestam, Beata</creatorcontrib><creatorcontrib>Lundeberg, Joakim</creatorcontrib><creatorcontrib>Carlén, Marie</creatorcontrib><creatorcontrib>Göritz, Christian</creatorcontrib><creatorcontrib>Frisén, Jonas</creatorcontrib><title>Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury</title><title>Cell</title><addtitle>Cell</addtitle><description>CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury. [Display omitted] •Inhibition of pericyte proliferation reduces fibrotic scar tissue following injury•Attenuated pericyte-derived scarring facilitates motor axon regeneration•Regenerated axons functionally re-integrate into the local spinal circuitry•Attenuated pericyte-derived scarring improves sensorimotor recovery Attenuation of fibrotic tissue generation by a subset of pericytes promotes regeneration of serotonergic and corticospinal tract axons and improves functional recovery after spinal cord injury.</description><subject>Animals</subject><subject>axon regeneration</subject><subject>Axons - physiology</subject><subject>Axons - radiation effects</subject><subject>Cicatrix - pathology</subject><subject>Disease Models, Animal</subject><subject>Evoked Potentials - radiation effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrosis</subject><subject>Light</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>optogenetics</subject><subject>pericyte</subject><subject>Pericytes - cytology</subject><subject>Pericytes - metabolism</subject><subject>Photic Stimulation</subject><subject>Pyramidal Tracts - physiology</subject><subject>Receptor, Platelet-Derived Growth Factor beta - genetics</subject><subject>Receptor, Platelet-Derived Growth Factor beta - metabolism</subject><subject>Recovery of Function</subject><subject>Regeneration</subject><subject>scar</subject><subject>Sensorimotor Cortex - physiology</subject><subject>sensorimotor functional recovery</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>spinal cord injury</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kctu2zAQRYkiQeOk_YEuCv2AlCElPgQUBQLnCSRIYbdrQiJHKV1ZNCjZgf8-VJznollxwLnnDoeXkG8UMgpUHC8yg22bMaAqA5YBFJ_IhEIp04JKtkcmACVLlZDFATns-wUAKM75Z3LASg6sFGpCbmZo18Z1d8kvDM5sB0xPY7FBm8xNFcJjJ_ilH7BPZmj8BsM2qZoBQzJfua5qk6kPNrnqFuuw_UL2m6rt8evTeUT-nJ_9nl6m17cXV9OT69TwIh9SUQta20bWdclMfLASyBBrY7lVynJe5eN-NcMCqYJGNJTB2KNM1tJYlR-RdOfb3-NqXetVcMsqbLWvnH66-hcr1EUJwEXUl__Vr4K3r9AzSHOpRAEij-zPHRsFS7QGuyFU7XuLd53O_dV3fqO5klTSMhqwnYEJvu8DNi8sBT0uqhd6DFKPQWpgOgYZoe9vp74gz8lFwY-dAOM_bxwG3RuHnUHrAppBW-8-8n8A5QiyxQ</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Dias, David Oliveira</creator><creator>Kim, Hoseok</creator><creator>Holl, Daniel</creator><creator>Werne Solnestam, Beata</creator><creator>Lundeberg, Joakim</creator><creator>Carlén, Marie</creator><creator>Göritz, Christian</creator><creator>Frisén, Jonas</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20180322</creationdate><title>Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury</title><author>Dias, David Oliveira ; Kim, Hoseok ; Holl, Daniel ; Werne Solnestam, Beata ; Lundeberg, Joakim ; Carlén, Marie ; Göritz, Christian ; Frisén, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-6b61bdf7bb92c10986e2eebcd5d88d55a31016b2e4e180f6f120d5d8127b7cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>axon regeneration</topic><topic>Axons - physiology</topic><topic>Axons - radiation effects</topic><topic>Cicatrix - pathology</topic><topic>Disease Models, Animal</topic><topic>Evoked Potentials - radiation effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrosis</topic><topic>Light</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>optogenetics</topic><topic>pericyte</topic><topic>Pericytes - cytology</topic><topic>Pericytes - metabolism</topic><topic>Photic Stimulation</topic><topic>Pyramidal Tracts - physiology</topic><topic>Receptor, Platelet-Derived Growth Factor beta - genetics</topic><topic>Receptor, Platelet-Derived Growth Factor beta - metabolism</topic><topic>Recovery of Function</topic><topic>Regeneration</topic><topic>scar</topic><topic>Sensorimotor Cortex - physiology</topic><topic>sensorimotor functional recovery</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>spinal cord injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, David Oliveira</creatorcontrib><creatorcontrib>Kim, Hoseok</creatorcontrib><creatorcontrib>Holl, Daniel</creatorcontrib><creatorcontrib>Werne Solnestam, Beata</creatorcontrib><creatorcontrib>Lundeberg, Joakim</creatorcontrib><creatorcontrib>Carlén, Marie</creatorcontrib><creatorcontrib>Göritz, Christian</creatorcontrib><creatorcontrib>Frisén, Jonas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, David Oliveira</au><au>Kim, Hoseok</au><au>Holl, Daniel</au><au>Werne Solnestam, Beata</au><au>Lundeberg, Joakim</au><au>Carlén, Marie</au><au>Göritz, Christian</au><au>Frisén, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>173</volume><issue>1</issue><spage>153</spage><epage>165.e22</epage><pages>153-165.e22</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury. [Display omitted] •Inhibition of pericyte proliferation reduces fibrotic scar tissue following injury•Attenuated pericyte-derived scarring facilitates motor axon regeneration•Regenerated axons functionally re-integrate into the local spinal circuitry•Attenuated pericyte-derived scarring improves sensorimotor recovery Attenuation of fibrotic tissue generation by a subset of pericytes promotes regeneration of serotonergic and corticospinal tract axons and improves functional recovery after spinal cord injury.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29502968</pmid><doi>10.1016/j.cell.2018.02.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2018-03, Vol.173 (1), p.153-165.e22
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_490056
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals
subjects Animals
axon regeneration
Axons - physiology
Axons - radiation effects
Cicatrix - pathology
Disease Models, Animal
Evoked Potentials - radiation effects
Extracellular Matrix - metabolism
Fibrosis
Light
Medicin och hälsovetenskap
Mice
Mice, Transgenic
optogenetics
pericyte
Pericytes - cytology
Pericytes - metabolism
Photic Stimulation
Pyramidal Tracts - physiology
Receptor, Platelet-Derived Growth Factor beta - genetics
Receptor, Platelet-Derived Growth Factor beta - metabolism
Recovery of Function
Regeneration
scar
Sensorimotor Cortex - physiology
sensorimotor functional recovery
Spinal Cord Injuries - pathology
Spinal Cord Injuries - physiopathology
spinal cord injury
title Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Pericyte-Derived%20Scarring%20Promotes%20Recovery%20after%20Spinal%20Cord%20Injury&rft.jtitle=Cell&rft.au=Dias,%20David%20Oliveira&rft.date=2018-03-22&rft.volume=173&rft.issue=1&rft.spage=153&rft.epage=165.e22&rft.pages=153-165.e22&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2018.02.004&rft_dat=%3Cpubmed_swepu%3E29502968%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29502968&rft_els_id=S009286741830148X&rfr_iscdi=true