Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection
Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen deliv...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2018-03, Vol.26 (3), p.822-833 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 3 |
container_start_page | 822 |
container_title | Molecular therapy |
container_volume | 26 |
creator | Hart, Peter Copland, Alastair Diogo, Gil Reynolds Harris, Shane Spallek, Ralf Oehlmann, Wulf Singh, Mahavir Basile, Juan Rottenberg, Martin Paul, Matthew John Reljic, Rajko |
description | Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development.
In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis. |
doi_str_mv | 10.1016/j.ymthe.2017.12.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_489946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617306135</els_id><sourcerecordid>2012915033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEoqXwC5BQJDZsEvyIHXsBEhpRqFQeC9iwsRznpvWQ2MF2CvPvccl0oEiw8tXxd44f9xbFY4xqjDB_vq13U7qEmiDc1pjUWbtTHGNGWIUQae4easyPigcxbnOFmeT3iyMiGRaU0ePiy3vt_KxDsmaE6nSJ1rvyY_AJrCs3fppH-AFxVUwq9YW2Lqby3c74TpsEwS5TmZYOgllGH20sz9yQyRzzsLg36DHCo_16Unw-ff1p87Y6__DmbPPqvDKsZaliDZVMEK2h7wh0lIiOGGp63mJJGsIMR1z3DR0GMTRaQIeNpMA73QstGgb0pKjW3Pgd5qVTc7CTDjvltVV76WuuQDVCyoZnXv6Tn4Pvf5tujJi2QkjRkux9uXozMEFvwKWgx9sRt3acvVQX_koxiRHnTQ54tg8I_tsCManJRgPjqB34JarcTCIxQ5Rm9Olf6NYvweWvVARLgTBqW5wpulIm-BgDDIfLYKSu50Rt1a85uY5uFSYqa9n15M93HDw3g5GBFysAuXNXFoKKxoIz0NuQ26t6b_97wE96F9P-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198010771</pqid></control><display><type>article</type><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</creator><creatorcontrib>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</creatorcontrib><description>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development.
In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.12.016</identifier><identifier>PMID: 29518353</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyltransferases - genetics ; Acyltransferases - immunology ; adjuvant ; Adjuvants, Immunologic ; Adsorption ; Animals ; Antigen-presenting cells ; Antigens ; Antigens, Bacterial - genetics ; Antigens, Bacterial - immunology ; Bacillus Calmette-Guerin vaccine ; Bacterial Proteins - genetics ; Bacterial Proteins - immunology ; BCG ; BCG Vaccine - immunology ; CD4 antigen ; CD8 antigen ; Cell proliferation ; Cell-mediated immunity ; Cytokines ; Cytokines - metabolism ; Fusion protein ; immunity ; Immunity, Cellular ; Immunity, Mucosal ; Immunization ; Immunoglobulin A ; Immunoglobulin G ; Immunologic Memory ; Immunological memory ; Infections ; Infectious diseases ; Inflammation ; Interferon regulatory factor 3 ; Licenses ; Lymphocytes T ; Medicin och hälsovetenskap ; Memory cells ; Mice ; Mucosa ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - immunology ; Nanoparticles ; Oncology ; Original ; Proteins ; Recombinant Fusion Proteins - immunology ; Software ; Tuberculosis ; Tuberculosis - immunology ; Tuberculosis - prevention & control ; Tuberculosis Vaccines - immunology ; Vaccine efficacy ; Vaccines</subject><ispartof>Molecular therapy, 2018-03, Vol.26 (3), p.822-833</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Mar 7, 2018</rights><rights>2017. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</citedby><cites>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910664/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910664/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29518353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:137889872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Peter</creatorcontrib><creatorcontrib>Copland, Alastair</creatorcontrib><creatorcontrib>Diogo, Gil Reynolds</creatorcontrib><creatorcontrib>Harris, Shane</creatorcontrib><creatorcontrib>Spallek, Ralf</creatorcontrib><creatorcontrib>Oehlmann, Wulf</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Basile, Juan</creatorcontrib><creatorcontrib>Rottenberg, Martin</creatorcontrib><creatorcontrib>Paul, Matthew John</creatorcontrib><creatorcontrib>Reljic, Rajko</creatorcontrib><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development.
In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - immunology</subject><subject>adjuvant</subject><subject>Adjuvants, Immunologic</subject><subject>Adsorption</subject><subject>Animals</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - immunology</subject><subject>Bacillus Calmette-Guerin vaccine</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - immunology</subject><subject>BCG</subject><subject>BCG Vaccine - immunology</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell proliferation</subject><subject>Cell-mediated immunity</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Fusion protein</subject><subject>immunity</subject><subject>Immunity, Cellular</subject><subject>Immunity, Mucosal</subject><subject>Immunization</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin G</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Interferon regulatory factor 3</subject><subject>Licenses</subject><subject>Lymphocytes T</subject><subject>Medicin och hälsovetenskap</subject><subject>Memory cells</subject><subject>Mice</subject><subject>Mucosa</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Nanoparticles</subject><subject>Oncology</subject><subject>Original</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Software</subject><subject>Tuberculosis</subject><subject>Tuberculosis - immunology</subject><subject>Tuberculosis - prevention & control</subject><subject>Tuberculosis Vaccines - immunology</subject><subject>Vaccine efficacy</subject><subject>Vaccines</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kktv1DAUhSMEoqXwC5BQJDZsEvyIHXsBEhpRqFQeC9iwsRznpvWQ2MF2CvPvccl0oEiw8tXxd44f9xbFY4xqjDB_vq13U7qEmiDc1pjUWbtTHGNGWIUQae4easyPigcxbnOFmeT3iyMiGRaU0ePiy3vt_KxDsmaE6nSJ1rvyY_AJrCs3fppH-AFxVUwq9YW2Lqby3c74TpsEwS5TmZYOgllGH20sz9yQyRzzsLg36DHCo_16Unw-ff1p87Y6__DmbPPqvDKsZaliDZVMEK2h7wh0lIiOGGp63mJJGsIMR1z3DR0GMTRaQIeNpMA73QstGgb0pKjW3Pgd5qVTc7CTDjvltVV76WuuQDVCyoZnXv6Tn4Pvf5tujJi2QkjRkux9uXozMEFvwKWgx9sRt3acvVQX_koxiRHnTQ54tg8I_tsCManJRgPjqB34JarcTCIxQ5Rm9Olf6NYvweWvVARLgTBqW5wpulIm-BgDDIfLYKSu50Rt1a85uY5uFSYqa9n15M93HDw3g5GBFysAuXNXFoKKxoIz0NuQ26t6b_97wE96F9P-</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Hart, Peter</creator><creator>Copland, Alastair</creator><creator>Diogo, Gil Reynolds</creator><creator>Harris, Shane</creator><creator>Spallek, Ralf</creator><creator>Oehlmann, Wulf</creator><creator>Singh, Mahavir</creator><creator>Basile, Juan</creator><creator>Rottenberg, Martin</creator><creator>Paul, Matthew John</creator><creator>Reljic, Rajko</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20180307</creationdate><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><author>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - immunology</topic><topic>adjuvant</topic><topic>Adjuvants, Immunologic</topic><topic>Adsorption</topic><topic>Animals</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - immunology</topic><topic>Bacillus Calmette-Guerin vaccine</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - immunology</topic><topic>BCG</topic><topic>BCG Vaccine - immunology</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell proliferation</topic><topic>Cell-mediated immunity</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Fusion protein</topic><topic>immunity</topic><topic>Immunity, Cellular</topic><topic>Immunity, Mucosal</topic><topic>Immunization</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin G</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Interferon regulatory factor 3</topic><topic>Licenses</topic><topic>Lymphocytes T</topic><topic>Medicin och hälsovetenskap</topic><topic>Memory cells</topic><topic>Mice</topic><topic>Mucosa</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Nanoparticles</topic><topic>Oncology</topic><topic>Original</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Software</topic><topic>Tuberculosis</topic><topic>Tuberculosis - immunology</topic><topic>Tuberculosis - prevention & control</topic><topic>Tuberculosis Vaccines - immunology</topic><topic>Vaccine efficacy</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Peter</creatorcontrib><creatorcontrib>Copland, Alastair</creatorcontrib><creatorcontrib>Diogo, Gil Reynolds</creatorcontrib><creatorcontrib>Harris, Shane</creatorcontrib><creatorcontrib>Spallek, Ralf</creatorcontrib><creatorcontrib>Oehlmann, Wulf</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Basile, Juan</creatorcontrib><creatorcontrib>Rottenberg, Martin</creatorcontrib><creatorcontrib>Paul, Matthew John</creatorcontrib><creatorcontrib>Reljic, Rajko</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, Peter</au><au>Copland, Alastair</au><au>Diogo, Gil Reynolds</au><au>Harris, Shane</au><au>Spallek, Ralf</au><au>Oehlmann, Wulf</au><au>Singh, Mahavir</au><au>Basile, Juan</au><au>Rottenberg, Martin</au><au>Paul, Matthew John</au><au>Reljic, Rajko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>26</volume><issue>3</issue><spage>822</spage><epage>833</epage><pages>822-833</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development.
In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29518353</pmid><doi>10.1016/j.ymthe.2017.12.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2018-03, Vol.26 (3), p.822-833 |
issn | 1525-0016 1525-0024 1525-0024 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_489946 |
source | MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acyltransferases - genetics Acyltransferases - immunology adjuvant Adjuvants, Immunologic Adsorption Animals Antigen-presenting cells Antigens Antigens, Bacterial - genetics Antigens, Bacterial - immunology Bacillus Calmette-Guerin vaccine Bacterial Proteins - genetics Bacterial Proteins - immunology BCG BCG Vaccine - immunology CD4 antigen CD8 antigen Cell proliferation Cell-mediated immunity Cytokines Cytokines - metabolism Fusion protein immunity Immunity, Cellular Immunity, Mucosal Immunization Immunoglobulin A Immunoglobulin G Immunologic Memory Immunological memory Infections Infectious diseases Inflammation Interferon regulatory factor 3 Licenses Lymphocytes T Medicin och hälsovetenskap Memory cells Mice Mucosa Mycobacterium tuberculosis Mycobacterium tuberculosis - immunology Nanoparticles Oncology Original Proteins Recombinant Fusion Proteins - immunology Software Tuberculosis Tuberculosis - immunology Tuberculosis - prevention & control Tuberculosis Vaccines - immunology Vaccine efficacy Vaccines |
title | Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-Fusion%20Protein%20Complexes%20Protect%20against%20Mycobacterium%20tuberculosis%20Infection&rft.jtitle=Molecular%20therapy&rft.au=Hart,%20Peter&rft.date=2018-03-07&rft.volume=26&rft.issue=3&rft.spage=822&rft.epage=833&rft.pages=822-833&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.12.016&rft_dat=%3Cproquest_swepu%3E2012915033%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198010771&rft_id=info:pmid/29518353&rft_els_id=S1525001617306135&rfr_iscdi=true |