Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection

Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen deliv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2018-03, Vol.26 (3), p.822-833
Hauptverfasser: Hart, Peter, Copland, Alastair, Diogo, Gil Reynolds, Harris, Shane, Spallek, Ralf, Oehlmann, Wulf, Singh, Mahavir, Basile, Juan, Rottenberg, Martin, Paul, Matthew John, Reljic, Rajko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 3
container_start_page 822
container_title Molecular therapy
container_volume 26
creator Hart, Peter
Copland, Alastair
Diogo, Gil Reynolds
Harris, Shane
Spallek, Ralf
Oehlmann, Wulf
Singh, Mahavir
Basile, Juan
Rottenberg, Martin
Paul, Matthew John
Reljic, Rajko
description Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development. In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.
doi_str_mv 10.1016/j.ymthe.2017.12.016
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_489946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617306135</els_id><sourcerecordid>2012915033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEoqXwC5BQJDZsEvyIHXsBEhpRqFQeC9iwsRznpvWQ2MF2CvPvccl0oEiw8tXxd44f9xbFY4xqjDB_vq13U7qEmiDc1pjUWbtTHGNGWIUQae4easyPigcxbnOFmeT3iyMiGRaU0ePiy3vt_KxDsmaE6nSJ1rvyY_AJrCs3fppH-AFxVUwq9YW2Lqby3c74TpsEwS5TmZYOgllGH20sz9yQyRzzsLg36DHCo_16Unw-ff1p87Y6__DmbPPqvDKsZaliDZVMEK2h7wh0lIiOGGp63mJJGsIMR1z3DR0GMTRaQIeNpMA73QstGgb0pKjW3Pgd5qVTc7CTDjvltVV76WuuQDVCyoZnXv6Tn4Pvf5tujJi2QkjRkux9uXozMEFvwKWgx9sRt3acvVQX_koxiRHnTQ54tg8I_tsCManJRgPjqB34JarcTCIxQ5Rm9Olf6NYvweWvVARLgTBqW5wpulIm-BgDDIfLYKSu50Rt1a85uY5uFSYqa9n15M93HDw3g5GBFysAuXNXFoKKxoIz0NuQ26t6b_97wE96F9P-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198010771</pqid></control><display><type>article</type><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</creator><creatorcontrib>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</creatorcontrib><description>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development. In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</description><identifier>ISSN: 1525-0016</identifier><identifier>ISSN: 1525-0024</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.12.016</identifier><identifier>PMID: 29518353</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyltransferases - genetics ; Acyltransferases - immunology ; adjuvant ; Adjuvants, Immunologic ; Adsorption ; Animals ; Antigen-presenting cells ; Antigens ; Antigens, Bacterial - genetics ; Antigens, Bacterial - immunology ; Bacillus Calmette-Guerin vaccine ; Bacterial Proteins - genetics ; Bacterial Proteins - immunology ; BCG ; BCG Vaccine - immunology ; CD4 antigen ; CD8 antigen ; Cell proliferation ; Cell-mediated immunity ; Cytokines ; Cytokines - metabolism ; Fusion protein ; immunity ; Immunity, Cellular ; Immunity, Mucosal ; Immunization ; Immunoglobulin A ; Immunoglobulin G ; Immunologic Memory ; Immunological memory ; Infections ; Infectious diseases ; Inflammation ; Interferon regulatory factor 3 ; Licenses ; Lymphocytes T ; Medicin och hälsovetenskap ; Memory cells ; Mice ; Mucosa ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - immunology ; Nanoparticles ; Oncology ; Original ; Proteins ; Recombinant Fusion Proteins - immunology ; Software ; Tuberculosis ; Tuberculosis - immunology ; Tuberculosis - prevention &amp; control ; Tuberculosis Vaccines - immunology ; Vaccine efficacy ; Vaccines</subject><ispartof>Molecular therapy, 2018-03, Vol.26 (3), p.822-833</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Mar 7, 2018</rights><rights>2017. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</citedby><cites>FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910664/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910664/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,552,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29518353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:137889872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Peter</creatorcontrib><creatorcontrib>Copland, Alastair</creatorcontrib><creatorcontrib>Diogo, Gil Reynolds</creatorcontrib><creatorcontrib>Harris, Shane</creatorcontrib><creatorcontrib>Spallek, Ralf</creatorcontrib><creatorcontrib>Oehlmann, Wulf</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Basile, Juan</creatorcontrib><creatorcontrib>Rottenberg, Martin</creatorcontrib><creatorcontrib>Paul, Matthew John</creatorcontrib><creatorcontrib>Reljic, Rajko</creatorcontrib><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development. In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - immunology</subject><subject>adjuvant</subject><subject>Adjuvants, Immunologic</subject><subject>Adsorption</subject><subject>Animals</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - immunology</subject><subject>Bacillus Calmette-Guerin vaccine</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - immunology</subject><subject>BCG</subject><subject>BCG Vaccine - immunology</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell proliferation</subject><subject>Cell-mediated immunity</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Fusion protein</subject><subject>immunity</subject><subject>Immunity, Cellular</subject><subject>Immunity, Mucosal</subject><subject>Immunization</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin G</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Interferon regulatory factor 3</subject><subject>Licenses</subject><subject>Lymphocytes T</subject><subject>Medicin och hälsovetenskap</subject><subject>Memory cells</subject><subject>Mice</subject><subject>Mucosa</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Nanoparticles</subject><subject>Oncology</subject><subject>Original</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Software</subject><subject>Tuberculosis</subject><subject>Tuberculosis - immunology</subject><subject>Tuberculosis - prevention &amp; control</subject><subject>Tuberculosis Vaccines - immunology</subject><subject>Vaccine efficacy</subject><subject>Vaccines</subject><issn>1525-0016</issn><issn>1525-0024</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kktv1DAUhSMEoqXwC5BQJDZsEvyIHXsBEhpRqFQeC9iwsRznpvWQ2MF2CvPvccl0oEiw8tXxd44f9xbFY4xqjDB_vq13U7qEmiDc1pjUWbtTHGNGWIUQae4easyPigcxbnOFmeT3iyMiGRaU0ePiy3vt_KxDsmaE6nSJ1rvyY_AJrCs3fppH-AFxVUwq9YW2Lqby3c74TpsEwS5TmZYOgllGH20sz9yQyRzzsLg36DHCo_16Unw-ff1p87Y6__DmbPPqvDKsZaliDZVMEK2h7wh0lIiOGGp63mJJGsIMR1z3DR0GMTRaQIeNpMA73QstGgb0pKjW3Pgd5qVTc7CTDjvltVV76WuuQDVCyoZnXv6Tn4Pvf5tujJi2QkjRkux9uXozMEFvwKWgx9sRt3acvVQX_koxiRHnTQ54tg8I_tsCManJRgPjqB34JarcTCIxQ5Rm9Olf6NYvweWvVARLgTBqW5wpulIm-BgDDIfLYKSu50Rt1a85uY5uFSYqa9n15M93HDw3g5GBFysAuXNXFoKKxoIz0NuQ26t6b_97wE96F9P-</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Hart, Peter</creator><creator>Copland, Alastair</creator><creator>Diogo, Gil Reynolds</creator><creator>Harris, Shane</creator><creator>Spallek, Ralf</creator><creator>Oehlmann, Wulf</creator><creator>Singh, Mahavir</creator><creator>Basile, Juan</creator><creator>Rottenberg, Martin</creator><creator>Paul, Matthew John</creator><creator>Reljic, Rajko</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20180307</creationdate><title>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</title><author>Hart, Peter ; Copland, Alastair ; Diogo, Gil Reynolds ; Harris, Shane ; Spallek, Ralf ; Oehlmann, Wulf ; Singh, Mahavir ; Basile, Juan ; Rottenberg, Martin ; Paul, Matthew John ; Reljic, Rajko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-5439582aaedb2eb328b2c3cd67192425c606ad43ff8f4a8eb1c93e6bad8a845e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - immunology</topic><topic>adjuvant</topic><topic>Adjuvants, Immunologic</topic><topic>Adsorption</topic><topic>Animals</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - immunology</topic><topic>Bacillus Calmette-Guerin vaccine</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - immunology</topic><topic>BCG</topic><topic>BCG Vaccine - immunology</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell proliferation</topic><topic>Cell-mediated immunity</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Fusion protein</topic><topic>immunity</topic><topic>Immunity, Cellular</topic><topic>Immunity, Mucosal</topic><topic>Immunization</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin G</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Interferon regulatory factor 3</topic><topic>Licenses</topic><topic>Lymphocytes T</topic><topic>Medicin och hälsovetenskap</topic><topic>Memory cells</topic><topic>Mice</topic><topic>Mucosa</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Nanoparticles</topic><topic>Oncology</topic><topic>Original</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Software</topic><topic>Tuberculosis</topic><topic>Tuberculosis - immunology</topic><topic>Tuberculosis - prevention &amp; control</topic><topic>Tuberculosis Vaccines - immunology</topic><topic>Vaccine efficacy</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Peter</creatorcontrib><creatorcontrib>Copland, Alastair</creatorcontrib><creatorcontrib>Diogo, Gil Reynolds</creatorcontrib><creatorcontrib>Harris, Shane</creatorcontrib><creatorcontrib>Spallek, Ralf</creatorcontrib><creatorcontrib>Oehlmann, Wulf</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Basile, Juan</creatorcontrib><creatorcontrib>Rottenberg, Martin</creatorcontrib><creatorcontrib>Paul, Matthew John</creatorcontrib><creatorcontrib>Reljic, Rajko</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, Peter</au><au>Copland, Alastair</au><au>Diogo, Gil Reynolds</au><au>Harris, Shane</au><au>Spallek, Ralf</au><au>Oehlmann, Wulf</au><au>Singh, Mahavir</au><au>Basile, Juan</au><au>Rottenberg, Martin</au><au>Paul, Matthew John</au><au>Reljic, Rajko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>26</volume><issue>3</issue><spage>822</spage><epage>833</epage><pages>822-833</pages><issn>1525-0016</issn><issn>1525-0024</issn><eissn>1525-0024</eissn><abstract>Tuberculosis (TB) is the leading cause of death from infectious disease, and the current vaccine, Bacillus Calmette-Guerin (BCG), is inadequate. Nanoparticles (NPs) are an emerging vaccine technology, with recent successes in oncology and infectious diseases. NPs have been exploited as antigen delivery systems and also for their adjuvantic properties. However, the mechanisms underlying their immunological activity remain obscure. Here, we developed a novel mucosal TB vaccine (Nano-FP1) based upon yellow carnauba wax NPs (YC-NPs), coated with a fusion protein consisting of three Mycobacterium tuberculosis (Mtb) antigens: Acr, Ag85B, and HBHA. Mucosal immunization of BCG-primed mice with Nano-FP1 significantly enhanced protection in animals challenged with low-dose, aerosolized Mtb. Bacterial control by Nano-FP1 was associated with dramatically enhanced cellular immunity compared to BCG, including superior CD4+ and CD8+ T cell proliferation, tissue-resident memory T cell (Trm) seeding in the lungs, and cytokine polyfunctionality. Alongside these effects, we also observed potent humoral responses, such as the generation of Ag85B-specific serum IgG and respiratory IgA. Finally, we found that YC-NPs were able to activate antigen-presenting cells via an unconventional IRF-3-associated activation signature, without the production of potentially harmful inflammatory mediators, providing a mechanistic framework for vaccine efficacy and future development. In this issue of Molecular Therapy, Hart and colleagues describe a new vaccine candidate for tuberculosis based on multi-antigen fusion protein-coated nanoparticles. The work showed that mucosal boosting of systemic BCG induced superior immunity and conferred greater protection in Mycobacterium tuberculosis-infected mice than BCG alone. This new vaccine candidate, therefore, merits further development as a potential BCG-boost vaccine against tuberculosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29518353</pmid><doi>10.1016/j.ymthe.2017.12.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2018-03, Vol.26 (3), p.822-833
issn 1525-0016
1525-0024
1525-0024
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_489946
source MEDLINE; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acyltransferases - genetics
Acyltransferases - immunology
adjuvant
Adjuvants, Immunologic
Adsorption
Animals
Antigen-presenting cells
Antigens
Antigens, Bacterial - genetics
Antigens, Bacterial - immunology
Bacillus Calmette-Guerin vaccine
Bacterial Proteins - genetics
Bacterial Proteins - immunology
BCG
BCG Vaccine - immunology
CD4 antigen
CD8 antigen
Cell proliferation
Cell-mediated immunity
Cytokines
Cytokines - metabolism
Fusion protein
immunity
Immunity, Cellular
Immunity, Mucosal
Immunization
Immunoglobulin A
Immunoglobulin G
Immunologic Memory
Immunological memory
Infections
Infectious diseases
Inflammation
Interferon regulatory factor 3
Licenses
Lymphocytes T
Medicin och hälsovetenskap
Memory cells
Mice
Mucosa
Mycobacterium tuberculosis
Mycobacterium tuberculosis - immunology
Nanoparticles
Oncology
Original
Proteins
Recombinant Fusion Proteins - immunology
Software
Tuberculosis
Tuberculosis - immunology
Tuberculosis - prevention & control
Tuberculosis Vaccines - immunology
Vaccine efficacy
Vaccines
title Nanoparticle-Fusion Protein Complexes Protect against Mycobacterium tuberculosis Infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-Fusion%20Protein%20Complexes%20Protect%20against%20Mycobacterium%20tuberculosis%20Infection&rft.jtitle=Molecular%20therapy&rft.au=Hart,%20Peter&rft.date=2018-03-07&rft.volume=26&rft.issue=3&rft.spage=822&rft.epage=833&rft.pages=822-833&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.12.016&rft_dat=%3Cproquest_swepu%3E2012915033%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198010771&rft_id=info:pmid/29518353&rft_els_id=S1525001617306135&rfr_iscdi=true