Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity
Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion...
Gespeichert in:
Veröffentlicht in: | Acta Physiologica 2019-01, Vol.225 (1), p.e13110-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e13110 |
container_title | Acta Physiologica |
container_volume | 225 |
creator | Cardinale, D. A. Larsen, F. J. Jensen‐Urstad, M. Rullman, E. Søndergaard, H. Morales‐Alamo, D. Ekblom, B. Calbet, J. A. L. Boushel, R. |
description | Aim
We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).
Methods
Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.
Results
The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.
Conclusion
O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise. |
doi_str_mv | 10.1111/apha.13110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_487915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161769873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXphR-AInFBVCkex4kTbqtCKVIRCAFXy7HHuy6JndoJ3f33uGS7BySYi8fP3zyN9bLsOZBzSPVGjht5DiUAeZQdA2dNARzqx4eeNEfZaYw3hBCgUDJKn2ZHtG3qktfsOPv1aY6qx3yQMebS6dy6ONqAOvfb3Rpdupt-RqfwQcDtFKSarHe5nNLc1g6yTyoGZSO-zb_6ZOdNPtjJq413Otj0vh-Wxlhnp92z7ImRfcTT_XmSfb98_-3iqrj-_OHjxeq6UKzlpKAoNS2lqhgo03aplJKUgNKmQWOwA9pIzWWFhuiy05XklNe6bEiLtdGkPMmKxTfe4Th3Ygxp27ATXlqxl36mDgVreAtV4s_-yb-zP1bCh7VY242oaMMT_Wqhx-BvZ4yTGGxU2PfSoZ-joIS1LWNVxRL68i_0xs_Bpb8LCjXwuk1-iXq9UCr4GAOawwJAxH3c4j5u8SfuBL_YW87dgPqAPoSbAFiAO9vj7j9WYvXlarWY_ga1xbib</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161769873</pqid></control><display><type>article</type><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</creator><creatorcontrib>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</creatorcontrib><description>Aim
We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).
Methods
Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.
Results
The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.
Conclusion
O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</description><identifier>ISSN: 1748-1708</identifier><identifier>ISSN: 1748-1716</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13110</identifier><identifier>PMID: 29863764</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Affinity ; Blood flow ; Body Composition ; Electron transport ; exercise ; Exercise - physiology ; Exercise Test ; Female ; Fick method ; Humans ; Hyperoxia ; Knee ; Leg ; Magnetic resonance imaging ; Male ; Medicin/Teknik ; Medicine/Technology ; Middle Aged ; Mitochondria ; Mitochondria - metabolism ; mitochondrial p50 ; muscle O2 diffusion ; Muscle, Skeletal - metabolism ; OXPHOS ; Oxygen ; Oxygen - metabolism ; Oxygen Consumption - physiology ; Respiration ; thermodilution technique ; VO2max ; Young Adult</subject><ispartof>Acta Physiologica, 2019-01, Vol.225 (1), p.e13110-n/a</ispartof><rights>2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd</rights><rights>2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2019 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</citedby><cites>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</cites><orcidid>0000-0002-8607-550X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29863764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5287$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139939334$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardinale, D. A.</creatorcontrib><creatorcontrib>Larsen, F. J.</creatorcontrib><creatorcontrib>Jensen‐Urstad, M.</creatorcontrib><creatorcontrib>Rullman, E.</creatorcontrib><creatorcontrib>Søndergaard, H.</creatorcontrib><creatorcontrib>Morales‐Alamo, D.</creatorcontrib><creatorcontrib>Ekblom, B.</creatorcontrib><creatorcontrib>Calbet, J. A. L.</creatorcontrib><creatorcontrib>Boushel, R.</creatorcontrib><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim
We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).
Methods
Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.
Results
The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.
Conclusion
O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</description><subject>Adult</subject><subject>Affinity</subject><subject>Blood flow</subject><subject>Body Composition</subject><subject>Electron transport</subject><subject>exercise</subject><subject>Exercise - physiology</subject><subject>Exercise Test</subject><subject>Female</subject><subject>Fick method</subject><subject>Humans</subject><subject>Hyperoxia</subject><subject>Knee</subject><subject>Leg</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medicin/Teknik</subject><subject>Medicine/Technology</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial p50</subject><subject>muscle O2 diffusion</subject><subject>Muscle, Skeletal - metabolism</subject><subject>OXPHOS</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption - physiology</subject><subject>Respiration</subject><subject>thermodilution technique</subject><subject>VO2max</subject><subject>Young Adult</subject><issn>1748-1708</issn><issn>1748-1716</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhSMEolXphR-AInFBVCkex4kTbqtCKVIRCAFXy7HHuy6JndoJ3f33uGS7BySYi8fP3zyN9bLsOZBzSPVGjht5DiUAeZQdA2dNARzqx4eeNEfZaYw3hBCgUDJKn2ZHtG3qktfsOPv1aY6qx3yQMebS6dy6ONqAOvfb3Rpdupt-RqfwQcDtFKSarHe5nNLc1g6yTyoGZSO-zb_6ZOdNPtjJq413Otj0vh-Wxlhnp92z7ImRfcTT_XmSfb98_-3iqrj-_OHjxeq6UKzlpKAoNS2lqhgo03aplJKUgNKmQWOwA9pIzWWFhuiy05XklNe6bEiLtdGkPMmKxTfe4Th3Ygxp27ATXlqxl36mDgVreAtV4s_-yb-zP1bCh7VY242oaMMT_Wqhx-BvZ4yTGGxU2PfSoZ-joIS1LWNVxRL68i_0xs_Bpb8LCjXwuk1-iXq9UCr4GAOawwJAxH3c4j5u8SfuBL_YW87dgPqAPoSbAFiAO9vj7j9WYvXlarWY_ga1xbib</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Cardinale, D. A.</creator><creator>Larsen, F. J.</creator><creator>Jensen‐Urstad, M.</creator><creator>Rullman, E.</creator><creator>Søndergaard, H.</creator><creator>Morales‐Alamo, D.</creator><creator>Ekblom, B.</creator><creator>Calbet, J. A. L.</creator><creator>Boushel, R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF1</scope><orcidid>https://orcid.org/0000-0002-8607-550X</orcidid></search><sort><creationdate>201901</creationdate><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><author>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Affinity</topic><topic>Blood flow</topic><topic>Body Composition</topic><topic>Electron transport</topic><topic>exercise</topic><topic>Exercise - physiology</topic><topic>Exercise Test</topic><topic>Female</topic><topic>Fick method</topic><topic>Humans</topic><topic>Hyperoxia</topic><topic>Knee</topic><topic>Leg</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medicin/Teknik</topic><topic>Medicine/Technology</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial p50</topic><topic>muscle O2 diffusion</topic><topic>Muscle, Skeletal - metabolism</topic><topic>OXPHOS</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption - physiology</topic><topic>Respiration</topic><topic>thermodilution technique</topic><topic>VO2max</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardinale, D. A.</creatorcontrib><creatorcontrib>Larsen, F. J.</creatorcontrib><creatorcontrib>Jensen‐Urstad, M.</creatorcontrib><creatorcontrib>Rullman, E.</creatorcontrib><creatorcontrib>Søndergaard, H.</creatorcontrib><creatorcontrib>Morales‐Alamo, D.</creatorcontrib><creatorcontrib>Ekblom, B.</creatorcontrib><creatorcontrib>Calbet, J. A. L.</creatorcontrib><creatorcontrib>Boushel, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Gymnastik- och idrottshögskolan</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardinale, D. A.</au><au>Larsen, F. J.</au><au>Jensen‐Urstad, M.</au><au>Rullman, E.</au><au>Søndergaard, H.</au><au>Morales‐Alamo, D.</au><au>Ekblom, B.</au><au>Calbet, J. A. L.</au><au>Boushel, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2019-01</date><risdate>2019</risdate><volume>225</volume><issue>1</issue><spage>e13110</spage><epage>n/a</epage><pages>e13110-n/a</pages><issn>1748-1708</issn><issn>1748-1716</issn><eissn>1748-1716</eissn><abstract>Aim
We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).
Methods
Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.
Results
The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.
Conclusion
O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29863764</pmid><doi>10.1111/apha.13110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8607-550X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2019-01, Vol.225 (1), p.e13110-n/a |
issn | 1748-1708 1748-1716 1748-1716 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_487915 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Adult Affinity Blood flow Body Composition Electron transport exercise Exercise - physiology Exercise Test Female Fick method Humans Hyperoxia Knee Leg Magnetic resonance imaging Male Medicin/Teknik Medicine/Technology Middle Aged Mitochondria Mitochondria - metabolism mitochondrial p50 muscle O2 diffusion Muscle, Skeletal - metabolism OXPHOS Oxygen Oxygen - metabolism Oxygen Consumption - physiology Respiration thermodilution technique VO2max Young Adult |
title | Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle%20mass%20and%20inspired%20oxygen%20influence%20oxygen%20extraction%20at%20maximal%20exercise:%20Role%20of%20mitochondrial%20oxygen%20affinity&rft.jtitle=Acta%20Physiologica&rft.au=Cardinale,%20D.%20A.&rft.date=2019-01&rft.volume=225&rft.issue=1&rft.spage=e13110&rft.epage=n/a&rft.pages=e13110-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13110&rft_dat=%3Cproquest_swepu%3E2161769873%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161769873&rft_id=info:pmid/29863764&rfr_iscdi=true |