Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity

Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2019-01, Vol.225 (1), p.e13110-n/a
Hauptverfasser: Cardinale, D. A., Larsen, F. J., Jensen‐Urstad, M., Rullman, E., Søndergaard, H., Morales‐Alamo, D., Ekblom, B., Calbet, J. A. L., Boushel, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e13110
container_title Acta Physiologica
container_volume 225
creator Cardinale, D. A.
Larsen, F. J.
Jensen‐Urstad, M.
Rullman, E.
Søndergaard, H.
Morales‐Alamo, D.
Ekblom, B.
Calbet, J. A. L.
Boushel, R.
description Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery. Results The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time. Conclusion O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.
doi_str_mv 10.1111/apha.13110
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_487915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161769873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEolXphR-AInFBVCkex4kTbqtCKVIRCAFXy7HHuy6JndoJ3f33uGS7BySYi8fP3zyN9bLsOZBzSPVGjht5DiUAeZQdA2dNARzqx4eeNEfZaYw3hBCgUDJKn2ZHtG3qktfsOPv1aY6qx3yQMebS6dy6ONqAOvfb3Rpdupt-RqfwQcDtFKSarHe5nNLc1g6yTyoGZSO-zb_6ZOdNPtjJq413Otj0vh-Wxlhnp92z7ImRfcTT_XmSfb98_-3iqrj-_OHjxeq6UKzlpKAoNS2lqhgo03aplJKUgNKmQWOwA9pIzWWFhuiy05XklNe6bEiLtdGkPMmKxTfe4Th3Ygxp27ATXlqxl36mDgVreAtV4s_-yb-zP1bCh7VY242oaMMT_Wqhx-BvZ4yTGGxU2PfSoZ-joIS1LWNVxRL68i_0xs_Bpb8LCjXwuk1-iXq9UCr4GAOawwJAxH3c4j5u8SfuBL_YW87dgPqAPoSbAFiAO9vj7j9WYvXlarWY_ga1xbib</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161769873</pqid></control><display><type>article</type><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</creator><creatorcontrib>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</creatorcontrib><description>Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery. Results The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time. Conclusion O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</description><identifier>ISSN: 1748-1708</identifier><identifier>ISSN: 1748-1716</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13110</identifier><identifier>PMID: 29863764</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adult ; Affinity ; Blood flow ; Body Composition ; Electron transport ; exercise ; Exercise - physiology ; Exercise Test ; Female ; Fick method ; Humans ; Hyperoxia ; Knee ; Leg ; Magnetic resonance imaging ; Male ; Medicin/Teknik ; Medicine/Technology ; Middle Aged ; Mitochondria ; Mitochondria - metabolism ; mitochondrial p50 ; muscle O2 diffusion ; Muscle, Skeletal - metabolism ; OXPHOS ; Oxygen ; Oxygen - metabolism ; Oxygen Consumption - physiology ; Respiration ; thermodilution technique ; VO2max ; Young Adult</subject><ispartof>Acta Physiologica, 2019-01, Vol.225 (1), p.e13110-n/a</ispartof><rights>2018 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd</rights><rights>2018 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</citedby><cites>FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</cites><orcidid>0000-0002-8607-550X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29863764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-5287$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139939334$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardinale, D. A.</creatorcontrib><creatorcontrib>Larsen, F. J.</creatorcontrib><creatorcontrib>Jensen‐Urstad, M.</creatorcontrib><creatorcontrib>Rullman, E.</creatorcontrib><creatorcontrib>Søndergaard, H.</creatorcontrib><creatorcontrib>Morales‐Alamo, D.</creatorcontrib><creatorcontrib>Ekblom, B.</creatorcontrib><creatorcontrib>Calbet, J. A. L.</creatorcontrib><creatorcontrib>Boushel, R.</creatorcontrib><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery. Results The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time. Conclusion O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</description><subject>Adult</subject><subject>Affinity</subject><subject>Blood flow</subject><subject>Body Composition</subject><subject>Electron transport</subject><subject>exercise</subject><subject>Exercise - physiology</subject><subject>Exercise Test</subject><subject>Female</subject><subject>Fick method</subject><subject>Humans</subject><subject>Hyperoxia</subject><subject>Knee</subject><subject>Leg</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medicin/Teknik</subject><subject>Medicine/Technology</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial p50</subject><subject>muscle O2 diffusion</subject><subject>Muscle, Skeletal - metabolism</subject><subject>OXPHOS</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption - physiology</subject><subject>Respiration</subject><subject>thermodilution technique</subject><subject>VO2max</subject><subject>Young Adult</subject><issn>1748-1708</issn><issn>1748-1716</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhSMEolXphR-AInFBVCkex4kTbqtCKVIRCAFXy7HHuy6JndoJ3f33uGS7BySYi8fP3zyN9bLsOZBzSPVGjht5DiUAeZQdA2dNARzqx4eeNEfZaYw3hBCgUDJKn2ZHtG3qktfsOPv1aY6qx3yQMebS6dy6ONqAOvfb3Rpdupt-RqfwQcDtFKSarHe5nNLc1g6yTyoGZSO-zb_6ZOdNPtjJq413Otj0vh-Wxlhnp92z7ImRfcTT_XmSfb98_-3iqrj-_OHjxeq6UKzlpKAoNS2lqhgo03aplJKUgNKmQWOwA9pIzWWFhuiy05XklNe6bEiLtdGkPMmKxTfe4Th3Ygxp27ATXlqxl36mDgVreAtV4s_-yb-zP1bCh7VY242oaMMT_Wqhx-BvZ4yTGGxU2PfSoZ-joIS1LWNVxRL68i_0xs_Bpb8LCjXwuk1-iXq9UCr4GAOawwJAxH3c4j5u8SfuBL_YW87dgPqAPoSbAFiAO9vj7j9WYvXlarWY_ga1xbib</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Cardinale, D. A.</creator><creator>Larsen, F. J.</creator><creator>Jensen‐Urstad, M.</creator><creator>Rullman, E.</creator><creator>Søndergaard, H.</creator><creator>Morales‐Alamo, D.</creator><creator>Ekblom, B.</creator><creator>Calbet, J. A. L.</creator><creator>Boushel, R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF1</scope><orcidid>https://orcid.org/0000-0002-8607-550X</orcidid></search><sort><creationdate>201901</creationdate><title>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</title><author>Cardinale, D. A. ; Larsen, F. J. ; Jensen‐Urstad, M. ; Rullman, E. ; Søndergaard, H. ; Morales‐Alamo, D. ; Ekblom, B. ; Calbet, J. A. L. ; Boushel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4970-2ead23ac541cf9bbbbcca201cdf8effeb128ad7a5ef0d3bd5a7276d3809e6fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Affinity</topic><topic>Blood flow</topic><topic>Body Composition</topic><topic>Electron transport</topic><topic>exercise</topic><topic>Exercise - physiology</topic><topic>Exercise Test</topic><topic>Female</topic><topic>Fick method</topic><topic>Humans</topic><topic>Hyperoxia</topic><topic>Knee</topic><topic>Leg</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medicin/Teknik</topic><topic>Medicine/Technology</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial p50</topic><topic>muscle O2 diffusion</topic><topic>Muscle, Skeletal - metabolism</topic><topic>OXPHOS</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption - physiology</topic><topic>Respiration</topic><topic>thermodilution technique</topic><topic>VO2max</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardinale, D. A.</creatorcontrib><creatorcontrib>Larsen, F. J.</creatorcontrib><creatorcontrib>Jensen‐Urstad, M.</creatorcontrib><creatorcontrib>Rullman, E.</creatorcontrib><creatorcontrib>Søndergaard, H.</creatorcontrib><creatorcontrib>Morales‐Alamo, D.</creatorcontrib><creatorcontrib>Ekblom, B.</creatorcontrib><creatorcontrib>Calbet, J. A. L.</creatorcontrib><creatorcontrib>Boushel, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Gymnastik- och idrottshögskolan</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardinale, D. A.</au><au>Larsen, F. J.</au><au>Jensen‐Urstad, M.</au><au>Rullman, E.</au><au>Søndergaard, H.</au><au>Morales‐Alamo, D.</au><au>Ekblom, B.</au><au>Calbet, J. A. L.</au><au>Boushel, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2019-01</date><risdate>2019</risdate><volume>225</volume><issue>1</issue><spage>e13110</spage><epage>n/a</epage><pages>e13110-n/a</pages><issn>1748-1708</issn><issn>1748-1716</issn><eissn>1748-1716</eissn><abstract>Aim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery. Results The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time. Conclusion O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29863764</pmid><doi>10.1111/apha.13110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8607-550X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2019-01, Vol.225 (1), p.e13110-n/a
issn 1748-1708
1748-1716
1748-1716
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_487915
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Adult
Affinity
Blood flow
Body Composition
Electron transport
exercise
Exercise - physiology
Exercise Test
Female
Fick method
Humans
Hyperoxia
Knee
Leg
Magnetic resonance imaging
Male
Medicin/Teknik
Medicine/Technology
Middle Aged
Mitochondria
Mitochondria - metabolism
mitochondrial p50
muscle O2 diffusion
Muscle, Skeletal - metabolism
OXPHOS
Oxygen
Oxygen - metabolism
Oxygen Consumption - physiology
Respiration
thermodilution technique
VO2max
Young Adult
title Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muscle%20mass%20and%20inspired%20oxygen%20influence%20oxygen%20extraction%20at%20maximal%20exercise:%20Role%20of%20mitochondrial%20oxygen%20affinity&rft.jtitle=Acta%20Physiologica&rft.au=Cardinale,%20D.%20A.&rft.date=2019-01&rft.volume=225&rft.issue=1&rft.spage=e13110&rft.epage=n/a&rft.pages=e13110-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13110&rft_dat=%3Cproquest_swepu%3E2161769873%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161769873&rft_id=info:pmid/29863764&rfr_iscdi=true