Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging
Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2018-11, Vol.71, p.179-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | Neurobiology of aging |
container_volume | 71 |
creator | Machado, Alejandra Barroso, José Molina, Yaiza Nieto, Antonieta Díaz-Flores, Lucio Westman, Eric Ferreira, Daniel |
description | Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging. |
doi_str_mv | 10.1016/j.neurobiolaging.2018.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_485989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197458018302689</els_id><sourcerecordid>2095544930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhFVAWLFiQcJ04sS2xQVVLkSq1i7K2HOcm4yGJg51MxdvjKNMiFkhd2T76ju_PIeQDhYwCrT4fshEX72rret3ZsctyoCIDngHlL8iOlqVIKZP8JdkBlTxlpYAz8iaEAwBwxqvX5KyASORC7kh3593kgu6T1vlEJ3uLXnuzt0b3n5Jh6Wfb2AHHYN24KnpsNvWovdUzJnqavNNmn8wuseMRw2y7VTeuG23EIrF2-Za8anUf8N3pPCc_ri7vL67Tm9tv3y--3qSGcTanjMqG18DrumAMqRTQsPiEtuC8qEpZQAk50lJT3jZ1q2veMiFQ1AyrSrZVcU7S7d_wgNNSq8nbQfvfymmrTtLPeEPFRCmFjLz8Lx8Ha_6aHo20kHnBBfDo_bh5I_hriZOrwQaDfa9HdEtQOciyZCw2HdEvG2q8C8Fj-1SIglpjVQf1b6xqjVUBVzHWaH9_qrTUAzZP5sccI3C1ARh3e4wZqmAsjgYb69HMqnH2eZX-ANAUv8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095544930</pqid></control><display><type>article</type><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</creator><creatorcontrib>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</creatorcontrib><description>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</description><identifier>ISSN: 0197-4580</identifier><identifier>ISSN: 1558-1497</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2018.07.017</identifier><identifier>PMID: 30149289</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Aging ; Brain - anatomy & histology ; Brain - diagnostic imaging ; Cognition ; Cognitive Aging - physiology ; Cognitive Aging - psychology ; Female ; Hierarchical ; Humans ; Magnetic Resonance Imaging ; Male ; Medicin och hälsovetenskap ; Middle Aged ; Multivariate Analysis ; Neuropsychological Tests ; OPLS</subject><ispartof>Neurobiology of aging, 2018-11, Vol.71, p.179-188</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</citedby><cites>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</cites><orcidid>0000-0001-8957-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neurobiolaging.2018.07.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30149289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139237807$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Machado, Alejandra</creatorcontrib><creatorcontrib>Barroso, José</creatorcontrib><creatorcontrib>Molina, Yaiza</creatorcontrib><creatorcontrib>Nieto, Antonieta</creatorcontrib><creatorcontrib>Díaz-Flores, Lucio</creatorcontrib><creatorcontrib>Westman, Eric</creatorcontrib><creatorcontrib>Ferreira, Daniel</creatorcontrib><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Brain - anatomy & histology</subject><subject>Brain - diagnostic imaging</subject><subject>Cognition</subject><subject>Cognitive Aging - physiology</subject><subject>Cognitive Aging - psychology</subject><subject>Female</subject><subject>Hierarchical</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Neuropsychological Tests</subject><subject>OPLS</subject><issn>0197-4580</issn><issn>1558-1497</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhFVAWLFiQcJ04sS2xQVVLkSq1i7K2HOcm4yGJg51MxdvjKNMiFkhd2T76ju_PIeQDhYwCrT4fshEX72rret3ZsctyoCIDngHlL8iOlqVIKZP8JdkBlTxlpYAz8iaEAwBwxqvX5KyASORC7kh3593kgu6T1vlEJ3uLXnuzt0b3n5Jh6Wfb2AHHYN24KnpsNvWovdUzJnqavNNmn8wuseMRw2y7VTeuG23EIrF2-Za8anUf8N3pPCc_ri7vL67Tm9tv3y--3qSGcTanjMqG18DrumAMqRTQsPiEtuC8qEpZQAk50lJT3jZ1q2veMiFQ1AyrSrZVcU7S7d_wgNNSq8nbQfvfymmrTtLPeEPFRCmFjLz8Lx8Ha_6aHo20kHnBBfDo_bh5I_hriZOrwQaDfa9HdEtQOciyZCw2HdEvG2q8C8Fj-1SIglpjVQf1b6xqjVUBVzHWaH9_qrTUAzZP5sccI3C1ARh3e4wZqmAsjgYb69HMqnH2eZX-ANAUv8U</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Machado, Alejandra</creator><creator>Barroso, José</creator><creator>Molina, Yaiza</creator><creator>Nieto, Antonieta</creator><creator>Díaz-Flores, Lucio</creator><creator>Westman, Eric</creator><creator>Ferreira, Daniel</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-8957-661X</orcidid></search><sort><creationdate>20181101</creationdate><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><author>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Brain - anatomy & histology</topic><topic>Brain - diagnostic imaging</topic><topic>Cognition</topic><topic>Cognitive Aging - physiology</topic><topic>Cognitive Aging - psychology</topic><topic>Female</topic><topic>Hierarchical</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Neuropsychological Tests</topic><topic>OPLS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, Alejandra</creatorcontrib><creatorcontrib>Barroso, José</creatorcontrib><creatorcontrib>Molina, Yaiza</creatorcontrib><creatorcontrib>Nieto, Antonieta</creatorcontrib><creatorcontrib>Díaz-Flores, Lucio</creatorcontrib><creatorcontrib>Westman, Eric</creatorcontrib><creatorcontrib>Ferreira, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, Alejandra</au><au>Barroso, José</au><au>Molina, Yaiza</au><au>Nieto, Antonieta</au><au>Díaz-Flores, Lucio</au><au>Westman, Eric</au><au>Ferreira, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>71</volume><spage>179</spage><epage>188</epage><pages>179-188</pages><issn>0197-4580</issn><issn>1558-1497</issn><eissn>1558-1497</eissn><abstract>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30149289</pmid><doi>10.1016/j.neurobiolaging.2018.07.017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8957-661X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-4580 |
ispartof | Neurobiology of aging, 2018-11, Vol.71, p.179-188 |
issn | 0197-4580 1558-1497 1558-1497 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_485989 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adult Aged Aged, 80 and over Aging Brain - anatomy & histology Brain - diagnostic imaging Cognition Cognitive Aging - physiology Cognitive Aging - psychology Female Hierarchical Humans Magnetic Resonance Imaging Male Medicin och hälsovetenskap Middle Aged Multivariate Analysis Neuropsychological Tests OPLS |
title | Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20for%20a%20hierarchical,%20multidimensional,%20and%20multivariate%20approach%20to%20investigate%20cognitive%20aging&rft.jtitle=Neurobiology%20of%20aging&rft.au=Machado,%20Alejandra&rft.date=2018-11-01&rft.volume=71&rft.spage=179&rft.epage=188&rft.pages=179-188&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2018.07.017&rft_dat=%3Cproquest_swepu%3E2095544930%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095544930&rft_id=info:pmid/30149289&rft_els_id=S0197458018302689&rfr_iscdi=true |