Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging

Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2018-11, Vol.71, p.179-188
Hauptverfasser: Machado, Alejandra, Barroso, José, Molina, Yaiza, Nieto, Antonieta, Díaz-Flores, Lucio, Westman, Eric, Ferreira, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 179
container_title Neurobiology of aging
container_volume 71
creator Machado, Alejandra
Barroso, José
Molina, Yaiza
Nieto, Antonieta
Díaz-Flores, Lucio
Westman, Eric
Ferreira, Daniel
description Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.
doi_str_mv 10.1016/j.neurobiolaging.2018.07.017
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_485989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197458018302689</els_id><sourcerecordid>2095544930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhFVAWLFiQcJ04sS2xQVVLkSq1i7K2HOcm4yGJg51MxdvjKNMiFkhd2T76ju_PIeQDhYwCrT4fshEX72rret3ZsctyoCIDngHlL8iOlqVIKZP8JdkBlTxlpYAz8iaEAwBwxqvX5KyASORC7kh3593kgu6T1vlEJ3uLXnuzt0b3n5Jh6Wfb2AHHYN24KnpsNvWovdUzJnqavNNmn8wuseMRw2y7VTeuG23EIrF2-Za8anUf8N3pPCc_ri7vL67Tm9tv3y--3qSGcTanjMqG18DrumAMqRTQsPiEtuC8qEpZQAk50lJT3jZ1q2veMiFQ1AyrSrZVcU7S7d_wgNNSq8nbQfvfymmrTtLPeEPFRCmFjLz8Lx8Ha_6aHo20kHnBBfDo_bh5I_hriZOrwQaDfa9HdEtQOciyZCw2HdEvG2q8C8Fj-1SIglpjVQf1b6xqjVUBVzHWaH9_qrTUAzZP5sccI3C1ARh3e4wZqmAsjgYb69HMqnH2eZX-ANAUv8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095544930</pqid></control><display><type>article</type><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</creator><creatorcontrib>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</creatorcontrib><description>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</description><identifier>ISSN: 0197-4580</identifier><identifier>ISSN: 1558-1497</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2018.07.017</identifier><identifier>PMID: 30149289</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Aging ; Brain - anatomy &amp; histology ; Brain - diagnostic imaging ; Cognition ; Cognitive Aging - physiology ; Cognitive Aging - psychology ; Female ; Hierarchical ; Humans ; Magnetic Resonance Imaging ; Male ; Medicin och hälsovetenskap ; Middle Aged ; Multivariate Analysis ; Neuropsychological Tests ; OPLS</subject><ispartof>Neurobiology of aging, 2018-11, Vol.71, p.179-188</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</citedby><cites>FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</cites><orcidid>0000-0001-8957-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neurobiolaging.2018.07.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30149289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139237807$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Machado, Alejandra</creatorcontrib><creatorcontrib>Barroso, José</creatorcontrib><creatorcontrib>Molina, Yaiza</creatorcontrib><creatorcontrib>Nieto, Antonieta</creatorcontrib><creatorcontrib>Díaz-Flores, Lucio</creatorcontrib><creatorcontrib>Westman, Eric</creatorcontrib><creatorcontrib>Ferreira, Daniel</creatorcontrib><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - diagnostic imaging</subject><subject>Cognition</subject><subject>Cognitive Aging - physiology</subject><subject>Cognitive Aging - psychology</subject><subject>Female</subject><subject>Hierarchical</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medicin och hälsovetenskap</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Neuropsychological Tests</subject><subject>OPLS</subject><issn>0197-4580</issn><issn>1558-1497</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhFVAWLFiQcJ04sS2xQVVLkSq1i7K2HOcm4yGJg51MxdvjKNMiFkhd2T76ju_PIeQDhYwCrT4fshEX72rret3ZsctyoCIDngHlL8iOlqVIKZP8JdkBlTxlpYAz8iaEAwBwxqvX5KyASORC7kh3593kgu6T1vlEJ3uLXnuzt0b3n5Jh6Wfb2AHHYN24KnpsNvWovdUzJnqavNNmn8wuseMRw2y7VTeuG23EIrF2-Za8anUf8N3pPCc_ri7vL67Tm9tv3y--3qSGcTanjMqG18DrumAMqRTQsPiEtuC8qEpZQAk50lJT3jZ1q2veMiFQ1AyrSrZVcU7S7d_wgNNSq8nbQfvfymmrTtLPeEPFRCmFjLz8Lx8Ha_6aHo20kHnBBfDo_bh5I_hriZOrwQaDfa9HdEtQOciyZCw2HdEvG2q8C8Fj-1SIglpjVQf1b6xqjVUBVzHWaH9_qrTUAzZP5sccI3C1ARh3e4wZqmAsjgYb69HMqnH2eZX-ANAUv8U</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Machado, Alejandra</creator><creator>Barroso, José</creator><creator>Molina, Yaiza</creator><creator>Nieto, Antonieta</creator><creator>Díaz-Flores, Lucio</creator><creator>Westman, Eric</creator><creator>Ferreira, Daniel</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-8957-661X</orcidid></search><sort><creationdate>20181101</creationdate><title>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</title><author>Machado, Alejandra ; Barroso, José ; Molina, Yaiza ; Nieto, Antonieta ; Díaz-Flores, Lucio ; Westman, Eric ; Ferreira, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-419d7b07bb344e1980d4b070f377365930502e15a17fdbfab7f488e8b4e669f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - diagnostic imaging</topic><topic>Cognition</topic><topic>Cognitive Aging - physiology</topic><topic>Cognitive Aging - psychology</topic><topic>Female</topic><topic>Hierarchical</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medicin och hälsovetenskap</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Neuropsychological Tests</topic><topic>OPLS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, Alejandra</creatorcontrib><creatorcontrib>Barroso, José</creatorcontrib><creatorcontrib>Molina, Yaiza</creatorcontrib><creatorcontrib>Nieto, Antonieta</creatorcontrib><creatorcontrib>Díaz-Flores, Lucio</creatorcontrib><creatorcontrib>Westman, Eric</creatorcontrib><creatorcontrib>Ferreira, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, Alejandra</au><au>Barroso, José</au><au>Molina, Yaiza</au><au>Nieto, Antonieta</au><au>Díaz-Flores, Lucio</au><au>Westman, Eric</au><au>Ferreira, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>71</volume><spage>179</spage><epage>188</epage><pages>179-188</pages><issn>0197-4580</issn><issn>1558-1497</issn><eissn>1558-1497</eissn><abstract>Cognitive aging is highly complex. We applied a data-driven statistical method to investigate aging from a hierarchical, multidimensional, and multivariate approach. Orthogonal partial least squares to latent structures and hierarchical models were applied for the first time in a study of cognitive aging. The association between age and a total of 316 demographic, clinical, cognitive, and neuroimaging measures was simultaneously analyzed in 460 cognitively normal individuals (35–85 years). Age showed a strong association with brain structure, especially with cortical thickness in frontal and parietal association regions. Age also showed a fairly strong association with cognition. Although a strong association of age with executive functions and processing speed was captured as expected, the association of age with visual memory was stronger. Clinical measures were less strongly associated with age. Hierarchical and correlation analyses further showed these associations in a neuroimaging-cognitive-clinical order of importance. We conclude that orthogonal partial least square and hierarchical models are a promising approach to better understand the complexity in cognitive aging.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30149289</pmid><doi>10.1016/j.neurobiolaging.2018.07.017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8957-661X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0197-4580
ispartof Neurobiology of aging, 2018-11, Vol.71, p.179-188
issn 0197-4580
1558-1497
1558-1497
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_485989
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult
Aged
Aged, 80 and over
Aging
Brain - anatomy & histology
Brain - diagnostic imaging
Cognition
Cognitive Aging - physiology
Cognitive Aging - psychology
Female
Hierarchical
Humans
Magnetic Resonance Imaging
Male
Medicin och hälsovetenskap
Middle Aged
Multivariate Analysis
Neuropsychological Tests
OPLS
title Proposal for a hierarchical, multidimensional, and multivariate approach to investigate cognitive aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proposal%20for%20a%20hierarchical,%20multidimensional,%20and%20multivariate%20approach%20to%20investigate%20cognitive%20aging&rft.jtitle=Neurobiology%20of%20aging&rft.au=Machado,%20Alejandra&rft.date=2018-11-01&rft.volume=71&rft.spage=179&rft.epage=188&rft.pages=179-188&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2018.07.017&rft_dat=%3Cproquest_swepu%3E2095544930%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095544930&rft_id=info:pmid/30149289&rft_els_id=S0197458018302689&rfr_iscdi=true