Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer
Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations 1 – 6 . cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2018-10, Vol.50 (10), p.1375-1380 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1380 |
---|---|
container_issue | 10 |
container_start_page | 1375 |
container_title | Nature genetics |
container_volume | 50 |
creator | Orlando, Giulia Law, Philip J. Cornish, Alex J. Dobbins, Sara E. Chubb, Daniel Broderick, Peter Litchfield, Kevin Hariri, Fadi Pastinen, Tomi Osborne, Cameron S. Taipale, Jussi Houlston, Richard S. |
description | Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations
1
–
6
. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas
7
,
8
. We identify a recurrently mutated CRE interacting with the
ETV1
promoter affecting gene expression.
ETV1
expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that
RASL11A
is targeted by a previously identified enhancer amplification
1
. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.
Promoter capture Hi-C in colorectal cancer cells integrated with cancer genome and expression data identifies a noncoding, cis-regulatory element that is recurrently mutated in cancer, affecting
ETV1
expression, cell viability and patient survival. |
doi_str_mv | 10.1038/s41588-018-0211-z |
format | Article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_485539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572988738</galeid><sourcerecordid>A572988738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-a1645fa3f665bd7d5a62f75e972452295044a622b165b4b64235e38fffb62fb83</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbK3-AG9kwRu9SM33Zi_LodpCoeLXbcxmJ4fU3eSYZFH7683xHFsqChJChpnnHZLJ2zRPCT4mmKlXmROhFMKkbkoIur7XHBLBJSIdUfdrjCVBHDN50DzK-QpjwjlWD5sDhinlkrPD5vPbFOdYILXWbMqSoD3zaIUGk2Fs_QiheOetKT6GNro2gV1Sqtk2xGDj6MO6nZfyq55bH1obp1ihYqbaMFhIj5sHzkwZnuzPo-bj69MPqzN0cfnmfHVygawUvCBDJBfOMCelGMZuFEZS1wnoO8oFpb3AnNcUHUit80FyygQw5ZwbKjgodtSgXd_8DTbLoDfJzyb90NF4vU99qRForoRgfeVf7PhNil8XyEXPPluYJhMgLllTgnvGOGGsos__QK_ikkJ9TaUo7zDtVH9Lrc0E2gcXSzJ221SfiI72SnVse83jv1B1jTB7GwM4X_N3BC_vCCpT4HtZmyVnff7-3f-zl5_usmTH2hRzTuBuJkaw3rpL79ylq7v01l36umqe7QexDDOMN4rfdqoA3X9CLYU1pNtJ_bvrTxes17s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124702789</pqid></control><display><type>article</type><title>Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>SWEPUB Freely available online</source><creator>Orlando, Giulia ; Law, Philip J. ; Cornish, Alex J. ; Dobbins, Sara E. ; Chubb, Daniel ; Broderick, Peter ; Litchfield, Kevin ; Hariri, Fadi ; Pastinen, Tomi ; Osborne, Cameron S. ; Taipale, Jussi ; Houlston, Richard S.</creator><creatorcontrib>Orlando, Giulia ; Law, Philip J. ; Cornish, Alex J. ; Dobbins, Sara E. ; Chubb, Daniel ; Broderick, Peter ; Litchfield, Kevin ; Hariri, Fadi ; Pastinen, Tomi ; Osborne, Cameron S. ; Taipale, Jussi ; Houlston, Richard S.</creatorcontrib><description>Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations
1
–
6
. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas
7
,
8
. We identify a recurrently mutated CRE interacting with the
ETV1
promoter affecting gene expression.
ETV1
expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that
RASL11A
is targeted by a previously identified enhancer amplification
1
. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.
Promoter capture Hi-C in colorectal cancer cells integrated with cancer genome and expression data identifies a noncoding, cis-regulatory element that is recurrently mutated in cancer, affecting
ETV1
expression, cell viability and patient survival.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-018-0211-z</identifier><identifier>PMID: 30224643</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/31 ; 13/44 ; 13/89 ; 38 ; 38/22 ; 38/39 ; 38/77 ; 38/90 ; 38/91 ; 45 ; 631/208/212 ; 631/67/1504/1885 ; Agriculture ; Animal Genetics and Genomics ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Caco-2 Cells ; Cancer ; Cancer cells ; Cancer genetics ; Cancer Research ; Cell Transformation, Neoplastic - genetics ; Chromosomes, Human - chemistry ; Codon, Nonsense ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - epidemiology ; Colorectal Neoplasms - genetics ; Computational Biology - methods ; Conformation ; Databases, Genetic ; Deoxyribonucleic acid ; DNA ; DNA, Neoplasm - chemistry ; Gene expression ; Gene Frequency ; Gene Function ; Gene mapping ; Gene mutation ; Genes ; Genetic aspects ; Genomes ; Genomics ; HeLa Cells ; Hep G2 Cells ; High-Throughput Nucleotide Sequencing - methods ; HT29 Cells ; Human Genetics ; Humans ; Identification ; K562 Cells ; Letter ; MCF-7 Cells ; Mutation ; Noncoding DNA ; Nucleic Acid Conformation ; Nucleotide sequence ; Promoter Regions, Genetic - genetics ; Recurrence (Disease) ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid - genetics ; Transcription factors ; Tumor cell lines ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Nature genetics, 2018-10, Vol.50 (10), p.1375-1380</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-a1645fa3f665bd7d5a62f75e972452295044a622b165b4b64235e38fffb62fb83</citedby><cites>FETCH-LOGICAL-c654t-a1645fa3f665bd7d5a62f75e972452295044a622b165b4b64235e38fffb62fb83</cites><orcidid>0000-0002-5268-0242 ; 0000-0001-9663-4611 ; 0000-0002-8348-5829 ; 0000-0002-3966-3501 ; 0000-0001-5320-3467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-018-0211-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-018-0211-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30224643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139292432$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Orlando, Giulia</creatorcontrib><creatorcontrib>Law, Philip J.</creatorcontrib><creatorcontrib>Cornish, Alex J.</creatorcontrib><creatorcontrib>Dobbins, Sara E.</creatorcontrib><creatorcontrib>Chubb, Daniel</creatorcontrib><creatorcontrib>Broderick, Peter</creatorcontrib><creatorcontrib>Litchfield, Kevin</creatorcontrib><creatorcontrib>Hariri, Fadi</creatorcontrib><creatorcontrib>Pastinen, Tomi</creatorcontrib><creatorcontrib>Osborne, Cameron S.</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Houlston, Richard S.</creatorcontrib><title>Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations
1
–
6
. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas
7
,
8
. We identify a recurrently mutated CRE interacting with the
ETV1
promoter affecting gene expression.
ETV1
expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that
RASL11A
is targeted by a previously identified enhancer amplification
1
. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.
Promoter capture Hi-C in colorectal cancer cells integrated with cancer genome and expression data identifies a noncoding, cis-regulatory element that is recurrently mutated in cancer, affecting
ETV1
expression, cell viability and patient survival.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/44</subject><subject>13/89</subject><subject>38</subject><subject>38/22</subject><subject>38/39</subject><subject>38/77</subject><subject>38/90</subject><subject>38/91</subject><subject>45</subject><subject>631/208/212</subject><subject>631/67/1504/1885</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caco-2 Cells</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer genetics</subject><subject>Cancer Research</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Chromosomes, Human - chemistry</subject><subject>Codon, Nonsense</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - epidemiology</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Computational Biology - methods</subject><subject>Conformation</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Neoplasm - chemistry</subject><subject>Gene expression</subject><subject>Gene Frequency</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>HT29 Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification</subject><subject>K562 Cells</subject><subject>Letter</subject><subject>MCF-7 Cells</subject><subject>Mutation</subject><subject>Noncoding DNA</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide sequence</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Recurrence (Disease)</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Transcription factors</subject><subject>Tumor cell lines</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqNkl1rFTEQhhdRbK3-AG9kwRu9SM33Zi_LodpCoeLXbcxmJ4fU3eSYZFH7683xHFsqChJChpnnHZLJ2zRPCT4mmKlXmROhFMKkbkoIur7XHBLBJSIdUfdrjCVBHDN50DzK-QpjwjlWD5sDhinlkrPD5vPbFOdYILXWbMqSoD3zaIUGk2Fs_QiheOetKT6GNro2gV1Sqtk2xGDj6MO6nZfyq55bH1obp1ihYqbaMFhIj5sHzkwZnuzPo-bj69MPqzN0cfnmfHVygawUvCBDJBfOMCelGMZuFEZS1wnoO8oFpb3AnNcUHUit80FyygQw5ZwbKjgodtSgXd_8DTbLoDfJzyb90NF4vU99qRForoRgfeVf7PhNil8XyEXPPluYJhMgLllTgnvGOGGsos__QK_ikkJ9TaUo7zDtVH9Lrc0E2gcXSzJ221SfiI72SnVse83jv1B1jTB7GwM4X_N3BC_vCCpT4HtZmyVnff7-3f-zl5_usmTH2hRzTuBuJkaw3rpL79ylq7v01l36umqe7QexDDOMN4rfdqoA3X9CLYU1pNtJ_bvrTxes17s</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Orlando, Giulia</creator><creator>Law, Philip J.</creator><creator>Cornish, Alex J.</creator><creator>Dobbins, Sara E.</creator><creator>Chubb, Daniel</creator><creator>Broderick, Peter</creator><creator>Litchfield, Kevin</creator><creator>Hariri, Fadi</creator><creator>Pastinen, Tomi</creator><creator>Osborne, Cameron S.</creator><creator>Taipale, Jussi</creator><creator>Houlston, Richard S.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-5268-0242</orcidid><orcidid>https://orcid.org/0000-0001-9663-4611</orcidid><orcidid>https://orcid.org/0000-0002-8348-5829</orcidid><orcidid>https://orcid.org/0000-0002-3966-3501</orcidid><orcidid>https://orcid.org/0000-0001-5320-3467</orcidid></search><sort><creationdate>20181001</creationdate><title>Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer</title><author>Orlando, Giulia ; Law, Philip J. ; Cornish, Alex J. ; Dobbins, Sara E. ; Chubb, Daniel ; Broderick, Peter ; Litchfield, Kevin ; Hariri, Fadi ; Pastinen, Tomi ; Osborne, Cameron S. ; Taipale, Jussi ; Houlston, Richard S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-a1645fa3f665bd7d5a62f75e972452295044a622b165b4b64235e38fffb62fb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/44</topic><topic>13/89</topic><topic>38</topic><topic>38/22</topic><topic>38/39</topic><topic>38/77</topic><topic>38/90</topic><topic>38/91</topic><topic>45</topic><topic>631/208/212</topic><topic>631/67/1504/1885</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caco-2 Cells</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer genetics</topic><topic>Cancer Research</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Chromosomes, Human - chemistry</topic><topic>Codon, Nonsense</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - epidemiology</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Computational Biology - methods</topic><topic>Conformation</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Neoplasm - chemistry</topic><topic>Gene expression</topic><topic>Gene Frequency</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>HT29 Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification</topic><topic>K562 Cells</topic><topic>Letter</topic><topic>MCF-7 Cells</topic><topic>Mutation</topic><topic>Noncoding DNA</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide sequence</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Recurrence (Disease)</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Transcription factors</topic><topic>Tumor cell lines</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlando, Giulia</creatorcontrib><creatorcontrib>Law, Philip J.</creatorcontrib><creatorcontrib>Cornish, Alex J.</creatorcontrib><creatorcontrib>Dobbins, Sara E.</creatorcontrib><creatorcontrib>Chubb, Daniel</creatorcontrib><creatorcontrib>Broderick, Peter</creatorcontrib><creatorcontrib>Litchfield, Kevin</creatorcontrib><creatorcontrib>Hariri, Fadi</creatorcontrib><creatorcontrib>Pastinen, Tomi</creatorcontrib><creatorcontrib>Osborne, Cameron S.</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Houlston, Richard S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlando, Giulia</au><au>Law, Philip J.</au><au>Cornish, Alex J.</au><au>Dobbins, Sara E.</au><au>Chubb, Daniel</au><au>Broderick, Peter</au><au>Litchfield, Kevin</au><au>Hariri, Fadi</au><au>Pastinen, Tomi</au><au>Osborne, Cameron S.</au><au>Taipale, Jussi</au><au>Houlston, Richard S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>50</volume><issue>10</issue><spage>1375</spage><epage>1380</epage><pages>1375-1380</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations
1
–
6
. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas
7
,
8
. We identify a recurrently mutated CRE interacting with the
ETV1
promoter affecting gene expression.
ETV1
expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that
RASL11A
is targeted by a previously identified enhancer amplification
1
. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.
Promoter capture Hi-C in colorectal cancer cells integrated with cancer genome and expression data identifies a noncoding, cis-regulatory element that is recurrently mutated in cancer, affecting
ETV1
expression, cell viability and patient survival.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30224643</pmid><doi>10.1038/s41588-018-0211-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5268-0242</orcidid><orcidid>https://orcid.org/0000-0001-9663-4611</orcidid><orcidid>https://orcid.org/0000-0002-8348-5829</orcidid><orcidid>https://orcid.org/0000-0002-3966-3501</orcidid><orcidid>https://orcid.org/0000-0001-5320-3467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2018-10, Vol.50 (10), p.1375-1380 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_485539 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; SWEPUB Freely available online |
subjects | 13/1 13/106 13/109 13/31 13/44 13/89 38 38/22 38/39 38/77 38/90 38/91 45 631/208/212 631/67/1504/1885 Agriculture Animal Genetics and Genomics Biochemistry Bioinformatics Biomedical and Life Sciences Biomedicine Caco-2 Cells Cancer Cancer cells Cancer genetics Cancer Research Cell Transformation, Neoplastic - genetics Chromosomes, Human - chemistry Codon, Nonsense Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - epidemiology Colorectal Neoplasms - genetics Computational Biology - methods Conformation Databases, Genetic Deoxyribonucleic acid DNA DNA, Neoplasm - chemistry Gene expression Gene Frequency Gene Function Gene mapping Gene mutation Genes Genetic aspects Genomes Genomics HeLa Cells Hep G2 Cells High-Throughput Nucleotide Sequencing - methods HT29 Cells Human Genetics Humans Identification K562 Cells Letter MCF-7 Cells Mutation Noncoding DNA Nucleic Acid Conformation Nucleotide sequence Promoter Regions, Genetic - genetics Recurrence (Disease) Regulatory sequences Regulatory Sequences, Nucleic Acid - genetics Transcription factors Tumor cell lines Tumor Cells, Cultured Tumors |
title | Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoter%20capture%20Hi-C-based%20identification%20of%20recurrent%20noncoding%20mutations%20in%20colorectal%20cancer&rft.jtitle=Nature%20genetics&rft.au=Orlando,%20Giulia&rft.date=2018-10-01&rft.volume=50&rft.issue=10&rft.spage=1375&rft.epage=1380&rft.pages=1375-1380&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-018-0211-z&rft_dat=%3Cgale_swepu%3EA572988738%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124702789&rft_id=info:pmid/30224643&rft_galeid=A572988738&rfr_iscdi=true |