Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens
Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis 1 , 2 . It is essential for all organisms that use DNA as their genetic material and is a current drug target 3 , 4 . Since the discovery th...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-11, Vol.563 (7731), p.416-420 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 7731 |
container_start_page | 416 |
container_title | Nature (London) |
container_volume | 563 |
creator | Srinivas, Vivek Lebrette, Hugo Lundin, Daniel Kutin, Yuri Sahlin, Margareta Lerche, Michael Eirich, Jürgen Branca, Rui M. M. Cox, Nicholas Sjöberg, Britt-Marie Högbom, Martin |
description | Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis
1
,
2
. It is essential for all organisms that use DNA as their genetic material and is a current drug target
3
,
4
. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity
5
–
7
. Here we describe a group of RNR proteins in Mollicutes—including
Mycoplasma
pathogens—that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR—some of which are developing resistance to antibiotics—are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
A subclass of ribonucleotide reductase in
Mycoplasma
pathogens contains a stable radical formed from a modified tyrosine residue, overturning the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. |
doi_str_mv | 10.1038/s41586-018-0653-6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_484134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573147242</galeid><wanfj_id>scslkxzz202310018</wanfj_id><sourcerecordid>scslkxzz202310018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c885t-523854b2689f79d797b2254332835d7ac073d039bacafd92e804422100b839e43</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqXwA7hBEdwwiQx_xs7NpGrjY9KmIWDcWo7jZN5SO7MTuu7X46ilW1EnIV_E9nnOG_s9PknyGoIDCDD_GAikPM8A5BnIKc7yJ8kEEpZnJOfsaTIBAMUIx_le8iKEKwAAhYw8T_YwIKighE6SizPdyzarvdapN6Wzg2q1600Vl7oaVG-cTTu30HGVlstUpsfn32apl5VRsk2NTc-WynWtDHOZdrK_dI224WXyrJZt0K_W32ly8fnTz6Ov2en5l5Oj2WmmOKd9RhHmlJQo50XNiooVrESIEowRx7RiUgGGK4CLUipZVwXSHBCCEASg5LjQBE-TbKUbFrobStF5M5d-KZw0Yr11HWdaEE4gHvkPj_LH5tdMON-IMAiYR2PB_-GtHQQHDI3qhys8snNdKW17L9utrO2INZeicb9FjiHLCx4F9lcCC2lraRtx5QZvo4EiqNBe397dIYBwvD4c2ffrn3l3M-jQi7kJSrettNoNQSCIMY-Hgiyi7_5BN7qR4oQhGiuxoRrZamFs7eIZ1SgqZpTh-K4QQfeOb1Gx5jpeyFldm7i9xb_dwavO3IiH0MEOKI5Kz43aqbq_lRCZXt_2jRxCECc_vm-zcMUq70Lwut4UBAIxtpFYtZGIroqxjWI5psmbh5XcZPztmwig9cuIIdtof2_p46p_ALS4I3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138472552</pqid></control><display><type>article</type><title>Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>SWEPUB Freely available online</source><creator>Srinivas, Vivek ; Lebrette, Hugo ; Lundin, Daniel ; Kutin, Yuri ; Sahlin, Margareta ; Lerche, Michael ; Eirich, Jürgen ; Branca, Rui M. M. ; Cox, Nicholas ; Sjöberg, Britt-Marie ; Högbom, Martin</creator><creatorcontrib>Srinivas, Vivek ; Lebrette, Hugo ; Lundin, Daniel ; Kutin, Yuri ; Sahlin, Margareta ; Lerche, Michael ; Eirich, Jürgen ; Branca, Rui M. M. ; Cox, Nicholas ; Sjöberg, Britt-Marie ; Högbom, Martin</creatorcontrib><description>Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis
1
,
2
. It is essential for all organisms that use DNA as their genetic material and is a current drug target
3
,
4
. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity
5
–
7
. Here we describe a group of RNR proteins in Mollicutes—including
Mycoplasma
pathogens—that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR—some of which are developing resistance to antibiotics—are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
A subclass of ribonucleotide reductase in
Mycoplasma
pathogens contains a stable radical formed from a modified tyrosine residue, overturning the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1671-3885</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0653-6</identifier><identifier>PMID: 30429545</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/49 ; 631/45/607/1168 ; 631/535/1266 ; 82/80 ; 82/83 ; Amino Acid Sequence ; Antibiotics ; Bacteria ; Biochemistry ; Biokemi ; Catalysis ; Data analysis ; Deoxyribonucleic acid ; Deoxyribonucleotides ; Dihydroxyphenylalanine ; Dihydroxyphenylalanine - chemistry ; Dihydroxyphenylalanine - metabolism ; DNA ; DNA biosynthesis ; E coli ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Eukaryotes ; Humanities and Social Sciences ; Immune system ; Immune System - metabolism ; Iron ; Iron - metabolism ; L-dopa ; Letter ; Mass spectrometry ; Metals ; Metals - metabolism ; Microbial drug resistance ; Models, Molecular ; multidisciplinary ; Mycoplasma ; Mycoplasma - drug effects ; Mycoplasma - enzymology ; Mycoplasma - genetics ; Mycoplasma - metabolism ; Operon - genetics ; Organic chemistry ; Oxidation ; Oxidation-Reduction ; Pathogenic microorganisms ; Pathogens ; Phenols (Class of compounds) ; Physiological aspects ; Proteins ; Proteomics ; Reductase ; Reduction ; Reduction (metal working) ; Resveratrol ; Ribonucleotide reductase ; Ribonucleotide Reductases - chemistry ; Ribonucleotide Reductases - metabolism ; Ribonucleotides - chemistry ; Ribonucleotides - metabolism ; Science ; Science (multidisciplinary) ; Scientific imaging ; Structural analysis ; Tyrosine ; Tyrosine - chemistry ; Tyrosine - metabolism</subject><ispartof>Nature (London), 2018-11, Vol.563 (7731), p.416-420</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 15, 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c885t-523854b2689f79d797b2254332835d7ac073d039bacafd92e804422100b839e43</citedby><cites>FETCH-LOGICAL-c885t-523854b2689f79d797b2254332835d7ac073d039bacafd92e804422100b839e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/scslkxzz/scslkxzz.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0653-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0653-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30429545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-80724$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161580$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139634874$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivas, Vivek</creatorcontrib><creatorcontrib>Lebrette, Hugo</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Kutin, Yuri</creatorcontrib><creatorcontrib>Sahlin, Margareta</creatorcontrib><creatorcontrib>Lerche, Michael</creatorcontrib><creatorcontrib>Eirich, Jürgen</creatorcontrib><creatorcontrib>Branca, Rui M. M.</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Sjöberg, Britt-Marie</creatorcontrib><creatorcontrib>Högbom, Martin</creatorcontrib><title>Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis
1
,
2
. It is essential for all organisms that use DNA as their genetic material and is a current drug target
3
,
4
. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity
5
–
7
. Here we describe a group of RNR proteins in Mollicutes—including
Mycoplasma
pathogens—that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR—some of which are developing resistance to antibiotics—are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
A subclass of ribonucleotide reductase in
Mycoplasma
pathogens contains a stable radical formed from a modified tyrosine residue, overturning the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase.</description><subject>631/45/173</subject><subject>631/45/49</subject><subject>631/45/607/1168</subject><subject>631/535/1266</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino Acid Sequence</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biokemi</subject><subject>Catalysis</subject><subject>Data analysis</subject><subject>Deoxyribonucleic acid</subject><subject>Deoxyribonucleotides</subject><subject>Dihydroxyphenylalanine</subject><subject>Dihydroxyphenylalanine - chemistry</subject><subject>Dihydroxyphenylalanine - metabolism</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Eukaryotes</subject><subject>Humanities and Social Sciences</subject><subject>Immune system</subject><subject>Immune System - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>L-dopa</subject><subject>Letter</subject><subject>Mass spectrometry</subject><subject>Metals</subject><subject>Metals - metabolism</subject><subject>Microbial drug resistance</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Mycoplasma</subject><subject>Mycoplasma - drug effects</subject><subject>Mycoplasma - enzymology</subject><subject>Mycoplasma - genetics</subject><subject>Mycoplasma - metabolism</subject><subject>Operon - genetics</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pathogenic microorganisms</subject><subject>Pathogens</subject><subject>Phenols (Class of compounds)</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Reductase</subject><subject>Reduction</subject><subject>Reduction (metal working)</subject><subject>Resveratrol</subject><subject>Ribonucleotide reductase</subject><subject>Ribonucleotide Reductases - chemistry</subject><subject>Ribonucleotide Reductases - metabolism</subject><subject>Ribonucleotides - chemistry</subject><subject>Ribonucleotides - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Structural analysis</subject><subject>Tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><issn>0028-0836</issn><issn>1671-3885</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNqNk11v0zAUhiMEYqXwA7hBEdwwiQx_xs7NpGrjY9KmIWDcWo7jZN5SO7MTuu7X46ilW1EnIV_E9nnOG_s9PknyGoIDCDD_GAikPM8A5BnIKc7yJ8kEEpZnJOfsaTIBAMUIx_le8iKEKwAAhYw8T_YwIKighE6SizPdyzarvdapN6Wzg2q1600Vl7oaVG-cTTu30HGVlstUpsfn32apl5VRsk2NTc-WynWtDHOZdrK_dI224WXyrJZt0K_W32ly8fnTz6Ov2en5l5Oj2WmmOKd9RhHmlJQo50XNiooVrESIEowRx7RiUgGGK4CLUipZVwXSHBCCEASg5LjQBE-TbKUbFrobStF5M5d-KZw0Yr11HWdaEE4gHvkPj_LH5tdMON-IMAiYR2PB_-GtHQQHDI3qhys8snNdKW17L9utrO2INZeicb9FjiHLCx4F9lcCC2lraRtx5QZvo4EiqNBe397dIYBwvD4c2ffrn3l3M-jQi7kJSrettNoNQSCIMY-Hgiyi7_5BN7qR4oQhGiuxoRrZamFs7eIZ1SgqZpTh-K4QQfeOb1Gx5jpeyFldm7i9xb_dwavO3IiH0MEOKI5Kz43aqbq_lRCZXt_2jRxCECc_vm-zcMUq70Lwut4UBAIxtpFYtZGIroqxjWI5psmbh5XcZPztmwig9cuIIdtof2_p46p_ALS4I3s</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Srinivas, Vivek</creator><creator>Lebrette, Hugo</creator><creator>Lundin, Daniel</creator><creator>Kutin, Yuri</creator><creator>Sahlin, Margareta</creator><creator>Lerche, Michael</creator><creator>Eirich, Jürgen</creator><creator>Branca, Rui M. M.</creator><creator>Cox, Nicholas</creator><creator>Sjöberg, Britt-Marie</creator><creator>Högbom, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><scope>DG7</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>201811</creationdate><title>Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens</title><author>Srinivas, Vivek ; Lebrette, Hugo ; Lundin, Daniel ; Kutin, Yuri ; Sahlin, Margareta ; Lerche, Michael ; Eirich, Jürgen ; Branca, Rui M. M. ; Cox, Nicholas ; Sjöberg, Britt-Marie ; Högbom, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c885t-523854b2689f79d797b2254332835d7ac073d039bacafd92e804422100b839e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/45/173</topic><topic>631/45/49</topic><topic>631/45/607/1168</topic><topic>631/535/1266</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino Acid Sequence</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biokemi</topic><topic>Catalysis</topic><topic>Data analysis</topic><topic>Deoxyribonucleic acid</topic><topic>Deoxyribonucleotides</topic><topic>Dihydroxyphenylalanine</topic><topic>Dihydroxyphenylalanine - chemistry</topic><topic>Dihydroxyphenylalanine - metabolism</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Eukaryotes</topic><topic>Humanities and Social Sciences</topic><topic>Immune system</topic><topic>Immune System - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>L-dopa</topic><topic>Letter</topic><topic>Mass spectrometry</topic><topic>Metals</topic><topic>Metals - metabolism</topic><topic>Microbial drug resistance</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Mycoplasma</topic><topic>Mycoplasma - drug effects</topic><topic>Mycoplasma - enzymology</topic><topic>Mycoplasma - genetics</topic><topic>Mycoplasma - metabolism</topic><topic>Operon - genetics</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pathogenic microorganisms</topic><topic>Pathogens</topic><topic>Phenols (Class of compounds)</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Reductase</topic><topic>Reduction</topic><topic>Reduction (metal working)</topic><topic>Resveratrol</topic><topic>Ribonucleotide reductase</topic><topic>Ribonucleotide Reductases - chemistry</topic><topic>Ribonucleotide Reductases - metabolism</topic><topic>Ribonucleotides - chemistry</topic><topic>Ribonucleotides - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Structural analysis</topic><topic>Tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivas, Vivek</creatorcontrib><creatorcontrib>Lebrette, Hugo</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Kutin, Yuri</creatorcontrib><creatorcontrib>Sahlin, Margareta</creatorcontrib><creatorcontrib>Lerche, Michael</creatorcontrib><creatorcontrib>Eirich, Jürgen</creatorcontrib><creatorcontrib>Branca, Rui M. M.</creatorcontrib><creatorcontrib>Cox, Nicholas</creatorcontrib><creatorcontrib>Sjöberg, Britt-Marie</creatorcontrib><creatorcontrib>Högbom, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivas, Vivek</au><au>Lebrette, Hugo</au><au>Lundin, Daniel</au><au>Kutin, Yuri</au><au>Sahlin, Margareta</au><au>Lerche, Michael</au><au>Eirich, Jürgen</au><au>Branca, Rui M. M.</au><au>Cox, Nicholas</au><au>Sjöberg, Britt-Marie</au><au>Högbom, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-11</date><risdate>2018</risdate><volume>563</volume><issue>7731</issue><spage>416</spage><epage>420</epage><pages>416-420</pages><issn>0028-0836</issn><issn>1671-3885</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis
1
,
2
. It is essential for all organisms that use DNA as their genetic material and is a current drug target
3
,
4
. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity
5
–
7
. Here we describe a group of RNR proteins in Mollicutes—including
Mycoplasma
pathogens—that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR—some of which are developing resistance to antibiotics—are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
A subclass of ribonucleotide reductase in
Mycoplasma
pathogens contains a stable radical formed from a modified tyrosine residue, overturning the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30429545</pmid><doi>10.1038/s41586-018-0653-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-11, Vol.563 (7731), p.416-420 |
issn | 0028-0836 1671-3885 1476-4687 1476-4687 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_484134 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online; SWEPUB Freely available online |
subjects | 631/45/173 631/45/49 631/45/607/1168 631/535/1266 82/80 82/83 Amino Acid Sequence Antibiotics Bacteria Biochemistry Biokemi Catalysis Data analysis Deoxyribonucleic acid Deoxyribonucleotides Dihydroxyphenylalanine Dihydroxyphenylalanine - chemistry Dihydroxyphenylalanine - metabolism DNA DNA biosynthesis E coli Enzymes Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - metabolism Eukaryotes Humanities and Social Sciences Immune system Immune System - metabolism Iron Iron - metabolism L-dopa Letter Mass spectrometry Metals Metals - metabolism Microbial drug resistance Models, Molecular multidisciplinary Mycoplasma Mycoplasma - drug effects Mycoplasma - enzymology Mycoplasma - genetics Mycoplasma - metabolism Operon - genetics Organic chemistry Oxidation Oxidation-Reduction Pathogenic microorganisms Pathogens Phenols (Class of compounds) Physiological aspects Proteins Proteomics Reductase Reduction Reduction (metal working) Resveratrol Ribonucleotide reductase Ribonucleotide Reductases - chemistry Ribonucleotide Reductases - metabolism Ribonucleotides - chemistry Ribonucleotides - metabolism Science Science (multidisciplinary) Scientific imaging Structural analysis Tyrosine Tyrosine - chemistry Tyrosine - metabolism |
title | Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-free%20ribonucleotide%20reduction%20powered%20by%20a%20DOPA%20radical%20in%20Mycoplasma%20pathogens&rft.jtitle=Nature%20(London)&rft.au=Srinivas,%20Vivek&rft.date=2018-11&rft.volume=563&rft.issue=7731&rft.spage=416&rft.epage=420&rft.pages=416-420&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0653-6&rft_dat=%3Cwanfang_jour_swepu%3Escslkxzz202310018%3C/wanfang_jour_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138472552&rft_id=info:pmid/30429545&rft_galeid=A573147242&rft_wanfj_id=scslkxzz202310018&rfr_iscdi=true |