Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets
Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucid...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Cardiology 2019-03, Vol.73 (9), p.1043-1054 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1054 |
---|---|
container_issue | 9 |
container_start_page | 1043 |
container_title | Journal of the American College of Cardiology |
container_volume | 73 |
creator | Morvan, Marion Arangalage, Dimitri Franck, Grégory Perez, Fanny Cattan-Levy, Léa Codogno, Isabelle Jacob-Lenet, Marie-Paule Deschildre, Catherine Choqueux, Christine Even, Guillaume Michel, Jean-Baptiste Bäck, Magnus Messika-Zeitoun, David Nicoletti, Antonino Caligiuri, Giuseppina Laschet, Jamila |
description | Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucidated.
This study sought to evaluate the putative link between intraleaflet hematoma and aortic valve calcification and to assess its pathophysiological implications.
The spatial relationship between calcium deposits and intraleaflet hematomas was analyzed by whole-mount staining of calcified and noncalcified human aortic valves, obtained in the context of heart transplantation and from patients who underwent surgical valve replacement. Endothelial microfissuring was evaluated by en face immunofluorescence and scanning electron microscopic analyses of the fibrosa surface. Red blood cell (RBC) preparations were used in vitro to assess, by immunofluorescence microscopy and Alizarin red staining, the potential impact of intraleaflet hematomas on phenotypic changes in VICs.
Intraleaflet hematomas, revealed by iron deposits and RBCs into the fibrosa, secondary to endothelial microfissuring, were consistently found in noncalcified valves. The contact of primary VICs derived from these valves with RBCs resulted in a global inflammatory and osteoblastic phenotype, reflected by the up-regulation of interleukin-6, interleukin-1β, bone sialoprotein, osteoprotegerin, receptor activator of nuclear factor kappa B, bone morphogenic protein 2, and muscle segment homeobox 2, the production of osteocalcin, and the formation of calcium deposits.
The acquisition of an osteoblastic phenotype in VICs that come into contact with the senescent RBCs of intraleaflet hematomas may play a critical role in the initiation of calcium deposition into the fibrosa of human aortic valves.
[Display omitted] |
doi_str_mv | 10.1016/j.jacc.2018.12.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_481431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109719301056</els_id><sourcerecordid>2187919722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-205d49e2729dfd82d47a76868080b6762f06a10fab0f66456380306d89857e3c3</originalsourceid><addsrcrecordid>eNp9kc2q1DAYhoMonvHoDbiQghtdtH5J8wtuhvFnDgwI4s8yZNKUk9o2Y9OOeDdzLXNlpnQ8qAtXCS_P95J8D0JPMRQYMH_VFI2xtiCAZYFJAZTcQyvMmMxLpsR9tAJRshyDElfoUYwNAHCJ1UN0VYKkHJRaoa8fXWtGH_p46w9ZqLObIfTZG3cI0c9xNobzaWNa66fuz9j32XbqTH8-rcMwens-fTHt0WU7Z-rWjfExelCbNronl_MafX739tNmm-8-vL_ZrHe5ZQBjToBVVDkiiKrqSpKKCiO45BIk7LngpAZuMNRmDzXnlPFSQgm8kkoy4UpbXqN86Y0_3GHa68PgOzP81MF4fYm-pZvTVGJa4sS_XPhb0_4Fb9c7PWdQUpm2R48z-2JhD0P4Prk46s5H69rW9C5MURMsFaO0ZCyhz_9BmzANffr5TAmFlSAkUWSh7BBiHFx99wIMelaqGz0r1bNSjYlOStPQs0v1tO9cdTfy22ECXi-AS3s-ejfoaL3rrav84Oyoq-D_1_8LfMSx8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187919722</pqid></control><display><type>article</type><title>Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Morvan, Marion ; Arangalage, Dimitri ; Franck, Grégory ; Perez, Fanny ; Cattan-Levy, Léa ; Codogno, Isabelle ; Jacob-Lenet, Marie-Paule ; Deschildre, Catherine ; Choqueux, Christine ; Even, Guillaume ; Michel, Jean-Baptiste ; Bäck, Magnus ; Messika-Zeitoun, David ; Nicoletti, Antonino ; Caligiuri, Giuseppina ; Laschet, Jamila</creator><creatorcontrib>Morvan, Marion ; Arangalage, Dimitri ; Franck, Grégory ; Perez, Fanny ; Cattan-Levy, Léa ; Codogno, Isabelle ; Jacob-Lenet, Marie-Paule ; Deschildre, Catherine ; Choqueux, Christine ; Even, Guillaume ; Michel, Jean-Baptiste ; Bäck, Magnus ; Messika-Zeitoun, David ; Nicoletti, Antonino ; Caligiuri, Giuseppina ; Laschet, Jamila</creatorcontrib><description>Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucidated.
This study sought to evaluate the putative link between intraleaflet hematoma and aortic valve calcification and to assess its pathophysiological implications.
The spatial relationship between calcium deposits and intraleaflet hematomas was analyzed by whole-mount staining of calcified and noncalcified human aortic valves, obtained in the context of heart transplantation and from patients who underwent surgical valve replacement. Endothelial microfissuring was evaluated by en face immunofluorescence and scanning electron microscopic analyses of the fibrosa surface. Red blood cell (RBC) preparations were used in vitro to assess, by immunofluorescence microscopy and Alizarin red staining, the potential impact of intraleaflet hematomas on phenotypic changes in VICs.
Intraleaflet hematomas, revealed by iron deposits and RBCs into the fibrosa, secondary to endothelial microfissuring, were consistently found in noncalcified valves. The contact of primary VICs derived from these valves with RBCs resulted in a global inflammatory and osteoblastic phenotype, reflected by the up-regulation of interleukin-6, interleukin-1β, bone sialoprotein, osteoprotegerin, receptor activator of nuclear factor kappa B, bone morphogenic protein 2, and muscle segment homeobox 2, the production of osteocalcin, and the formation of calcium deposits.
The acquisition of an osteoblastic phenotype in VICs that come into contact with the senescent RBCs of intraleaflet hematomas may play a critical role in the initiation of calcium deposition into the fibrosa of human aortic valves.
[Display omitted]</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2018.12.042</identifier><identifier>PMID: 30846099</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Alizarin ; Aortic valve ; Aortic Valve - diagnostic imaging ; Aortic Valve - metabolism ; Aortic Valve - pathology ; aortic valve stenosis ; Aortic Valve Stenosis - diagnosis ; Aortic Valve Stenosis - metabolism ; Biocompatibility ; Biomedical materials ; Bone sialoprotein ; Calcification ; Calcification (ectopic) ; Calcinosis - diagnosis ; Calcinosis - metabolism ; Calcium ; Calcium - metabolism ; Cardiology ; Cardiovascular disease ; Cells, Cultured ; Cloning ; Deposition ; Deposits ; Disease Progression ; endothelium ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - ultrastructure ; Erythrocytes ; Female ; Health care ; Heart ; Heart transplantation ; Hematoma ; Homeobox ; Humans ; IL-1β ; Immunofluorescence ; Immunoglobulins ; Inflammation ; Injuries ; Interleukin 6 ; Interleukins ; Interstitial cells ; Iron ; Iron - metabolism ; Laboratories ; Life Sciences ; Male ; Microscopy ; Microscopy, Electron, Scanning ; Microscopy, Fluorescence ; Middle Aged ; Muscles ; Osteoblasts ; Osteocalcin ; Osteoprotegerin ; Phenotype ; Phenotypes ; Physiology ; Proteins ; Rheumatic heart disease ; Scanning electron microscopy ; Staining ; Studies ; Surgery ; Transplantation ; Valve leaflets</subject><ispartof>Journal of the American College of Cardiology, 2019-03, Vol.73 (9), p.1043-1054</ispartof><rights>2019 American College of Cardiology Foundation</rights><rights>Copyright © 2019 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. American College of Cardiology Foundation</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-205d49e2729dfd82d47a76868080b6762f06a10fab0f66456380306d89857e3c3</citedby><cites>FETCH-LOGICAL-c500t-205d49e2729dfd82d47a76868080b6762f06a10fab0f66456380306d89857e3c3</cites><orcidid>0000-0002-2623-0897 ; 0000-0002-0898-9090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0735109719301056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30846099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03485974$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:140407442$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Morvan, Marion</creatorcontrib><creatorcontrib>Arangalage, Dimitri</creatorcontrib><creatorcontrib>Franck, Grégory</creatorcontrib><creatorcontrib>Perez, Fanny</creatorcontrib><creatorcontrib>Cattan-Levy, Léa</creatorcontrib><creatorcontrib>Codogno, Isabelle</creatorcontrib><creatorcontrib>Jacob-Lenet, Marie-Paule</creatorcontrib><creatorcontrib>Deschildre, Catherine</creatorcontrib><creatorcontrib>Choqueux, Christine</creatorcontrib><creatorcontrib>Even, Guillaume</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><creatorcontrib>Bäck, Magnus</creatorcontrib><creatorcontrib>Messika-Zeitoun, David</creatorcontrib><creatorcontrib>Nicoletti, Antonino</creatorcontrib><creatorcontrib>Caligiuri, Giuseppina</creatorcontrib><creatorcontrib>Laschet, Jamila</creatorcontrib><title>Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucidated.
This study sought to evaluate the putative link between intraleaflet hematoma and aortic valve calcification and to assess its pathophysiological implications.
The spatial relationship between calcium deposits and intraleaflet hematomas was analyzed by whole-mount staining of calcified and noncalcified human aortic valves, obtained in the context of heart transplantation and from patients who underwent surgical valve replacement. Endothelial microfissuring was evaluated by en face immunofluorescence and scanning electron microscopic analyses of the fibrosa surface. Red blood cell (RBC) preparations were used in vitro to assess, by immunofluorescence microscopy and Alizarin red staining, the potential impact of intraleaflet hematomas on phenotypic changes in VICs.
Intraleaflet hematomas, revealed by iron deposits and RBCs into the fibrosa, secondary to endothelial microfissuring, were consistently found in noncalcified valves. The contact of primary VICs derived from these valves with RBCs resulted in a global inflammatory and osteoblastic phenotype, reflected by the up-regulation of interleukin-6, interleukin-1β, bone sialoprotein, osteoprotegerin, receptor activator of nuclear factor kappa B, bone morphogenic protein 2, and muscle segment homeobox 2, the production of osteocalcin, and the formation of calcium deposits.
The acquisition of an osteoblastic phenotype in VICs that come into contact with the senescent RBCs of intraleaflet hematomas may play a critical role in the initiation of calcium deposition into the fibrosa of human aortic valves.
[Display omitted]</description><subject>Aged</subject><subject>Alizarin</subject><subject>Aortic valve</subject><subject>Aortic Valve - diagnostic imaging</subject><subject>Aortic Valve - metabolism</subject><subject>Aortic Valve - pathology</subject><subject>aortic valve stenosis</subject><subject>Aortic Valve Stenosis - diagnosis</subject><subject>Aortic Valve Stenosis - metabolism</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone sialoprotein</subject><subject>Calcification</subject><subject>Calcification (ectopic)</subject><subject>Calcinosis - diagnosis</subject><subject>Calcinosis - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Cells, Cultured</subject><subject>Cloning</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Disease Progression</subject><subject>endothelium</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - ultrastructure</subject><subject>Erythrocytes</subject><subject>Female</subject><subject>Health care</subject><subject>Heart</subject><subject>Heart transplantation</subject><subject>Hematoma</subject><subject>Homeobox</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Immunofluorescence</subject><subject>Immunoglobulins</subject><subject>Inflammation</subject><subject>Injuries</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Interstitial cells</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Fluorescence</subject><subject>Middle Aged</subject><subject>Muscles</subject><subject>Osteoblasts</subject><subject>Osteocalcin</subject><subject>Osteoprotegerin</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Rheumatic heart disease</subject><subject>Scanning electron microscopy</subject><subject>Staining</subject><subject>Studies</subject><subject>Surgery</subject><subject>Transplantation</subject><subject>Valve leaflets</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9kc2q1DAYhoMonvHoDbiQghtdtH5J8wtuhvFnDgwI4s8yZNKUk9o2Y9OOeDdzLXNlpnQ8qAtXCS_P95J8D0JPMRQYMH_VFI2xtiCAZYFJAZTcQyvMmMxLpsR9tAJRshyDElfoUYwNAHCJ1UN0VYKkHJRaoa8fXWtGH_p46w9ZqLObIfTZG3cI0c9xNobzaWNa66fuz9j32XbqTH8-rcMwens-fTHt0WU7Z-rWjfExelCbNronl_MafX739tNmm-8-vL_ZrHe5ZQBjToBVVDkiiKrqSpKKCiO45BIk7LngpAZuMNRmDzXnlPFSQgm8kkoy4UpbXqN86Y0_3GHa68PgOzP81MF4fYm-pZvTVGJa4sS_XPhb0_4Fb9c7PWdQUpm2R48z-2JhD0P4Prk46s5H69rW9C5MURMsFaO0ZCyhz_9BmzANffr5TAmFlSAkUWSh7BBiHFx99wIMelaqGz0r1bNSjYlOStPQs0v1tO9cdTfy22ECXi-AS3s-ejfoaL3rrav84Oyoq-D_1_8LfMSx8g</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Morvan, Marion</creator><creator>Arangalage, Dimitri</creator><creator>Franck, Grégory</creator><creator>Perez, Fanny</creator><creator>Cattan-Levy, Léa</creator><creator>Codogno, Isabelle</creator><creator>Jacob-Lenet, Marie-Paule</creator><creator>Deschildre, Catherine</creator><creator>Choqueux, Christine</creator><creator>Even, Guillaume</creator><creator>Michel, Jean-Baptiste</creator><creator>Bäck, Magnus</creator><creator>Messika-Zeitoun, David</creator><creator>Nicoletti, Antonino</creator><creator>Caligiuri, Giuseppina</creator><creator>Laschet, Jamila</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2623-0897</orcidid><orcidid>https://orcid.org/0000-0002-0898-9090</orcidid></search><sort><creationdate>20190312</creationdate><title>Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets</title><author>Morvan, Marion ; Arangalage, Dimitri ; Franck, Grégory ; Perez, Fanny ; Cattan-Levy, Léa ; Codogno, Isabelle ; Jacob-Lenet, Marie-Paule ; Deschildre, Catherine ; Choqueux, Christine ; Even, Guillaume ; Michel, Jean-Baptiste ; Bäck, Magnus ; Messika-Zeitoun, David ; Nicoletti, Antonino ; Caligiuri, Giuseppina ; Laschet, Jamila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-205d49e2729dfd82d47a76868080b6762f06a10fab0f66456380306d89857e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Alizarin</topic><topic>Aortic valve</topic><topic>Aortic Valve - diagnostic imaging</topic><topic>Aortic Valve - metabolism</topic><topic>Aortic Valve - pathology</topic><topic>aortic valve stenosis</topic><topic>Aortic Valve Stenosis - diagnosis</topic><topic>Aortic Valve Stenosis - metabolism</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone sialoprotein</topic><topic>Calcification</topic><topic>Calcification (ectopic)</topic><topic>Calcinosis - diagnosis</topic><topic>Calcinosis - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Cells, Cultured</topic><topic>Cloning</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Disease Progression</topic><topic>endothelium</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - ultrastructure</topic><topic>Erythrocytes</topic><topic>Female</topic><topic>Health care</topic><topic>Heart</topic><topic>Heart transplantation</topic><topic>Hematoma</topic><topic>Homeobox</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Immunofluorescence</topic><topic>Immunoglobulins</topic><topic>Inflammation</topic><topic>Injuries</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Interstitial cells</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Fluorescence</topic><topic>Middle Aged</topic><topic>Muscles</topic><topic>Osteoblasts</topic><topic>Osteocalcin</topic><topic>Osteoprotegerin</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Rheumatic heart disease</topic><topic>Scanning electron microscopy</topic><topic>Staining</topic><topic>Studies</topic><topic>Surgery</topic><topic>Transplantation</topic><topic>Valve leaflets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morvan, Marion</creatorcontrib><creatorcontrib>Arangalage, Dimitri</creatorcontrib><creatorcontrib>Franck, Grégory</creatorcontrib><creatorcontrib>Perez, Fanny</creatorcontrib><creatorcontrib>Cattan-Levy, Léa</creatorcontrib><creatorcontrib>Codogno, Isabelle</creatorcontrib><creatorcontrib>Jacob-Lenet, Marie-Paule</creatorcontrib><creatorcontrib>Deschildre, Catherine</creatorcontrib><creatorcontrib>Choqueux, Christine</creatorcontrib><creatorcontrib>Even, Guillaume</creatorcontrib><creatorcontrib>Michel, Jean-Baptiste</creatorcontrib><creatorcontrib>Bäck, Magnus</creatorcontrib><creatorcontrib>Messika-Zeitoun, David</creatorcontrib><creatorcontrib>Nicoletti, Antonino</creatorcontrib><creatorcontrib>Caligiuri, Giuseppina</creatorcontrib><creatorcontrib>Laschet, Jamila</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morvan, Marion</au><au>Arangalage, Dimitri</au><au>Franck, Grégory</au><au>Perez, Fanny</au><au>Cattan-Levy, Léa</au><au>Codogno, Isabelle</au><au>Jacob-Lenet, Marie-Paule</au><au>Deschildre, Catherine</au><au>Choqueux, Christine</au><au>Even, Guillaume</au><au>Michel, Jean-Baptiste</au><au>Bäck, Magnus</au><au>Messika-Zeitoun, David</au><au>Nicoletti, Antonino</au><au>Caligiuri, Giuseppina</au><au>Laschet, Jamila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2019-03-12</date><risdate>2019</risdate><volume>73</volume><issue>9</issue><spage>1043</spage><epage>1054</epage><pages>1043-1054</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Intraleaflet hematomas are associated with advanced stages of aortic valve calcification and suspected to be involved in disease progression. However, the mechanism by which the entry of blood cells into the valves affects the biology of aortic valvular interstitial cells (VICs) remains to be elucidated.
This study sought to evaluate the putative link between intraleaflet hematoma and aortic valve calcification and to assess its pathophysiological implications.
The spatial relationship between calcium deposits and intraleaflet hematomas was analyzed by whole-mount staining of calcified and noncalcified human aortic valves, obtained in the context of heart transplantation and from patients who underwent surgical valve replacement. Endothelial microfissuring was evaluated by en face immunofluorescence and scanning electron microscopic analyses of the fibrosa surface. Red blood cell (RBC) preparations were used in vitro to assess, by immunofluorescence microscopy and Alizarin red staining, the potential impact of intraleaflet hematomas on phenotypic changes in VICs.
Intraleaflet hematomas, revealed by iron deposits and RBCs into the fibrosa, secondary to endothelial microfissuring, were consistently found in noncalcified valves. The contact of primary VICs derived from these valves with RBCs resulted in a global inflammatory and osteoblastic phenotype, reflected by the up-regulation of interleukin-6, interleukin-1β, bone sialoprotein, osteoprotegerin, receptor activator of nuclear factor kappa B, bone morphogenic protein 2, and muscle segment homeobox 2, the production of osteocalcin, and the formation of calcium deposits.
The acquisition of an osteoblastic phenotype in VICs that come into contact with the senescent RBCs of intraleaflet hematomas may play a critical role in the initiation of calcium deposition into the fibrosa of human aortic valves.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30846099</pmid><doi>10.1016/j.jacc.2018.12.042</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2623-0897</orcidid><orcidid>https://orcid.org/0000-0002-0898-9090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1097 |
ispartof | Journal of the American College of Cardiology, 2019-03, Vol.73 (9), p.1043-1054 |
issn | 0735-1097 1558-3597 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_481431 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Aged Alizarin Aortic valve Aortic Valve - diagnostic imaging Aortic Valve - metabolism Aortic Valve - pathology aortic valve stenosis Aortic Valve Stenosis - diagnosis Aortic Valve Stenosis - metabolism Biocompatibility Biomedical materials Bone sialoprotein Calcification Calcification (ectopic) Calcinosis - diagnosis Calcinosis - metabolism Calcium Calcium - metabolism Cardiology Cardiovascular disease Cells, Cultured Cloning Deposition Deposits Disease Progression endothelium Endothelium, Vascular - metabolism Endothelium, Vascular - ultrastructure Erythrocytes Female Health care Heart Heart transplantation Hematoma Homeobox Humans IL-1β Immunofluorescence Immunoglobulins Inflammation Injuries Interleukin 6 Interleukins Interstitial cells Iron Iron - metabolism Laboratories Life Sciences Male Microscopy Microscopy, Electron, Scanning Microscopy, Fluorescence Middle Aged Muscles Osteoblasts Osteocalcin Osteoprotegerin Phenotype Phenotypes Physiology Proteins Rheumatic heart disease Scanning electron microscopy Staining Studies Surgery Transplantation Valve leaflets |
title | Relationship of Iron Deposition to Calcium Deposition in Human Aortic Valve Leaflets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20of%20Iron%20Deposition%20to%C2%A0Calcium%20Deposition%20in%20Human%C2%A0Aortic%C2%A0Valve%20Leaflets&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Morvan,%20Marion&rft.date=2019-03-12&rft.volume=73&rft.issue=9&rft.spage=1043&rft.epage=1054&rft.pages=1043-1054&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2018.12.042&rft_dat=%3Cproquest_swepu%3E2187919722%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187919722&rft_id=info:pmid/30846099&rft_els_id=S0735109719301056&rfr_iscdi=true |