Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner
Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Sat...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2019-06, Vol.102 (5), p.960-975.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975.e6 |
---|---|
container_issue | 5 |
container_start_page | 960 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 102 |
creator | Wester, Jason C. Mahadevan, Vivek Rhodes, Christopher T. Calvigioni, Daniela Venkatesh, Sanan Maric, Dragan Hunt, Steven Yuan, Xiaoqing Zhang, Yajun Petros, Timothy J. McBain, Chris J. |
description | Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
•IT-type projection neurons influence the lamination of CGE-derived interneurons•Converting IT-type cells to PT type disrupts CGE interneuron synaptic connections•PT-type projection neurons do not target CGE interneuron subtypes in deep layers•Loss of IT-type cells alters gene transcription in CGE cells but not major subtypes
Neocortical circuits are comprised of intermingled excitatory projection neuron and inhibitory interneuron subtypes. Wester et al. show that fate-switching corticocortical projection neurons to a subcerebral type selectively influences the lamination, circuit integration, and gene transcription of CGE-derived interneurons. |
doi_str_mv | 10.1016/j.neuron.2019.03.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_480209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319302995</els_id><sourcerecordid>2235557731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-442b5675168ece948ab92c614976bc6d47d02ed81b0e2adab9cc08611ae4adb83</originalsourceid><addsrcrecordid>eNp9Uktv1DAQthCILoV_gFAkLr1k8TvxBQlteVRaCgc4W44zbR2ydrCdRf33eMlSKAekkWY08803T4SeE7wmmMhXw9rDHINfU0zUGrMi8gFaEayamhOlHqIVbpWsJW3YCXqS0oAx4UKRx-iEEUwbJeUKTZcQbIjZWTNWn2MYwGYXfHX5iztVFz7lONtcjBvXuRzibTEzxKV4tXHRzi5X57CHMUw78LlyvjLV1nkw11CfwwS-P7g_Gu8hPkWPrsyY4NlRn6Kv795-2Xyot5_eX2zebGsrlMg157QTshFEtmBB8dZ0ilpJuGpkZ2XPmx5T6FvSYaCmL1FrcSsJMcBN37XsFNULb_oB09zpKbqdibc6GKePrm_FAs1bTLEq-NcLvkR20NvScTTjvbT7Ee9u9HXY67JjIVRTCM6OBDF8nyFlvXPJwjgaD2FOmlIiacukZAX68h_oEOboyzoKigkhmoaRguILysaQUoSru2YI1ocX0INerqAPL6AxKyJL2ou_B7lL-n3zP5NCWf_eQdTJOvAWehfL9XUf3P8r_ARHI8gS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235557731</pqid></control><display><type>article</type><title>Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wester, Jason C. ; Mahadevan, Vivek ; Rhodes, Christopher T. ; Calvigioni, Daniela ; Venkatesh, Sanan ; Maric, Dragan ; Hunt, Steven ; Yuan, Xiaoqing ; Zhang, Yajun ; Petros, Timothy J. ; McBain, Chris J.</creator><creatorcontrib>Wester, Jason C. ; Mahadevan, Vivek ; Rhodes, Christopher T. ; Calvigioni, Daniela ; Venkatesh, Sanan ; Maric, Dragan ; Hunt, Steven ; Yuan, Xiaoqing ; Zhang, Yajun ; Petros, Timothy J. ; McBain, Chris J.</creatorcontrib><description>Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
•IT-type projection neurons influence the lamination of CGE-derived interneurons•Converting IT-type cells to PT type disrupts CGE interneuron synaptic connections•PT-type projection neurons do not target CGE interneuron subtypes in deep layers•Loss of IT-type cells alters gene transcription in CGE cells but not major subtypes
Neocortical circuits are comprised of intermingled excitatory projection neuron and inhibitory interneuron subtypes. Wester et al. show that fate-switching corticocortical projection neurons to a subcerebral type selectively influences the lamination, circuit integration, and gene transcription of CGE-derived interneurons.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.03.036</identifier><identifier>PMID: 31027966</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Lineage ; Cell Movement ; Circuits ; cortex ; development ; embryonic lineage ; Gene Expression ; Gene Knockout Techniques ; interneuron ; Interneurons ; Interneurons - cytology ; Interneurons - metabolism ; Lamination ; Matrix Attachment Region Binding Proteins - genetics ; Mice ; Neocortex ; Neocortex - embryology ; Neural Inhibition - physiology ; Neural Pathways - embryology ; Neurons ; Neurons - cytology ; Neurons - metabolism ; projection neuron ; Pyramidal Tracts - cytology ; radial migration ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA ; Single-Cell Analysis ; single-cell RNA-sequencing ; Software ; Synapses - metabolism ; synaptic physiology ; Telencephalon - cytology ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Neuron (Cambridge, Mass.), 2019-06, Vol.102 (5), p.960-975.e6</ispartof><rights>2019</rights><rights>Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jun 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-442b5675168ece948ab92c614976bc6d47d02ed81b0e2adab9cc08611ae4adb83</citedby><cites>FETCH-LOGICAL-c595t-442b5675168ece948ab92c614976bc6d47d02ed81b0e2adab9cc08611ae4adb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627319302995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,550,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31027966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:141067111$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wester, Jason C.</creatorcontrib><creatorcontrib>Mahadevan, Vivek</creatorcontrib><creatorcontrib>Rhodes, Christopher T.</creatorcontrib><creatorcontrib>Calvigioni, Daniela</creatorcontrib><creatorcontrib>Venkatesh, Sanan</creatorcontrib><creatorcontrib>Maric, Dragan</creatorcontrib><creatorcontrib>Hunt, Steven</creatorcontrib><creatorcontrib>Yuan, Xiaoqing</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Petros, Timothy J.</creatorcontrib><creatorcontrib>McBain, Chris J.</creatorcontrib><title>Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
•IT-type projection neurons influence the lamination of CGE-derived interneurons•Converting IT-type cells to PT type disrupts CGE interneuron synaptic connections•PT-type projection neurons do not target CGE interneuron subtypes in deep layers•Loss of IT-type cells alters gene transcription in CGE cells but not major subtypes
Neocortical circuits are comprised of intermingled excitatory projection neuron and inhibitory interneuron subtypes. Wester et al. show that fate-switching corticocortical projection neurons to a subcerebral type selectively influences the lamination, circuit integration, and gene transcription of CGE-derived interneurons.</description><subject>Animals</subject><subject>Cell Lineage</subject><subject>Cell Movement</subject><subject>Circuits</subject><subject>cortex</subject><subject>development</subject><subject>embryonic lineage</subject><subject>Gene Expression</subject><subject>Gene Knockout Techniques</subject><subject>interneuron</subject><subject>Interneurons</subject><subject>Interneurons - cytology</subject><subject>Interneurons - metabolism</subject><subject>Lamination</subject><subject>Matrix Attachment Region Binding Proteins - genetics</subject><subject>Mice</subject><subject>Neocortex</subject><subject>Neocortex - embryology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - embryology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>projection neuron</subject><subject>Pyramidal Tracts - cytology</subject><subject>radial migration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>single-cell RNA-sequencing</subject><subject>Software</subject><subject>Synapses - metabolism</subject><subject>synaptic physiology</subject><subject>Telencephalon - cytology</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp9Uktv1DAQthCILoV_gFAkLr1k8TvxBQlteVRaCgc4W44zbR2ydrCdRf33eMlSKAekkWY08803T4SeE7wmmMhXw9rDHINfU0zUGrMi8gFaEayamhOlHqIVbpWsJW3YCXqS0oAx4UKRx-iEEUwbJeUKTZcQbIjZWTNWn2MYwGYXfHX5iztVFz7lONtcjBvXuRzibTEzxKV4tXHRzi5X57CHMUw78LlyvjLV1nkw11CfwwS-P7g_Gu8hPkWPrsyY4NlRn6Kv795-2Xyot5_eX2zebGsrlMg157QTshFEtmBB8dZ0ilpJuGpkZ2XPmx5T6FvSYaCmL1FrcSsJMcBN37XsFNULb_oB09zpKbqdibc6GKePrm_FAs1bTLEq-NcLvkR20NvScTTjvbT7Ee9u9HXY67JjIVRTCM6OBDF8nyFlvXPJwjgaD2FOmlIiacukZAX68h_oEOboyzoKigkhmoaRguILysaQUoSru2YI1ocX0INerqAPL6AxKyJL2ou_B7lL-n3zP5NCWf_eQdTJOvAWehfL9XUf3P8r_ARHI8gS</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Wester, Jason C.</creator><creator>Mahadevan, Vivek</creator><creator>Rhodes, Christopher T.</creator><creator>Calvigioni, Daniela</creator><creator>Venkatesh, Sanan</creator><creator>Maric, Dragan</creator><creator>Hunt, Steven</creator><creator>Yuan, Xiaoqing</creator><creator>Zhang, Yajun</creator><creator>Petros, Timothy J.</creator><creator>McBain, Chris J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20190605</creationdate><title>Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner</title><author>Wester, Jason C. ; Mahadevan, Vivek ; Rhodes, Christopher T. ; Calvigioni, Daniela ; Venkatesh, Sanan ; Maric, Dragan ; Hunt, Steven ; Yuan, Xiaoqing ; Zhang, Yajun ; Petros, Timothy J. ; McBain, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-442b5675168ece948ab92c614976bc6d47d02ed81b0e2adab9cc08611ae4adb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cell Lineage</topic><topic>Cell Movement</topic><topic>Circuits</topic><topic>cortex</topic><topic>development</topic><topic>embryonic lineage</topic><topic>Gene Expression</topic><topic>Gene Knockout Techniques</topic><topic>interneuron</topic><topic>Interneurons</topic><topic>Interneurons - cytology</topic><topic>Interneurons - metabolism</topic><topic>Lamination</topic><topic>Matrix Attachment Region Binding Proteins - genetics</topic><topic>Mice</topic><topic>Neocortex</topic><topic>Neocortex - embryology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - embryology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>projection neuron</topic><topic>Pyramidal Tracts - cytology</topic><topic>radial migration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>single-cell RNA-sequencing</topic><topic>Software</topic><topic>Synapses - metabolism</topic><topic>synaptic physiology</topic><topic>Telencephalon - cytology</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wester, Jason C.</creatorcontrib><creatorcontrib>Mahadevan, Vivek</creatorcontrib><creatorcontrib>Rhodes, Christopher T.</creatorcontrib><creatorcontrib>Calvigioni, Daniela</creatorcontrib><creatorcontrib>Venkatesh, Sanan</creatorcontrib><creatorcontrib>Maric, Dragan</creatorcontrib><creatorcontrib>Hunt, Steven</creatorcontrib><creatorcontrib>Yuan, Xiaoqing</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Petros, Timothy J.</creatorcontrib><creatorcontrib>McBain, Chris J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wester, Jason C.</au><au>Mahadevan, Vivek</au><au>Rhodes, Christopher T.</au><au>Calvigioni, Daniela</au><au>Venkatesh, Sanan</au><au>Maric, Dragan</au><au>Hunt, Steven</au><au>Yuan, Xiaoqing</au><au>Zhang, Yajun</au><au>Petros, Timothy J.</au><au>McBain, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-06-05</date><risdate>2019</risdate><volume>102</volume><issue>5</issue><spage>960</spage><epage>975.e6</epage><pages>960-975.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.
•IT-type projection neurons influence the lamination of CGE-derived interneurons•Converting IT-type cells to PT type disrupts CGE interneuron synaptic connections•PT-type projection neurons do not target CGE interneuron subtypes in deep layers•Loss of IT-type cells alters gene transcription in CGE cells but not major subtypes
Neocortical circuits are comprised of intermingled excitatory projection neuron and inhibitory interneuron subtypes. Wester et al. show that fate-switching corticocortical projection neurons to a subcerebral type selectively influences the lamination, circuit integration, and gene transcription of CGE-derived interneurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31027966</pmid><doi>10.1016/j.neuron.2019.03.036</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2019-06, Vol.102 (5), p.960-975.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_480209 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Cell Lineage Cell Movement Circuits cortex development embryonic lineage Gene Expression Gene Knockout Techniques interneuron Interneurons Interneurons - cytology Interneurons - metabolism Lamination Matrix Attachment Region Binding Proteins - genetics Mice Neocortex Neocortex - embryology Neural Inhibition - physiology Neural Pathways - embryology Neurons Neurons - cytology Neurons - metabolism projection neuron Pyramidal Tracts - cytology radial migration Ribonucleic acid RNA Sequence Analysis, RNA Single-Cell Analysis single-cell RNA-sequencing Software Synapses - metabolism synaptic physiology Telencephalon - cytology Transcription factors Transcription Factors - genetics |
title | Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neocortical%20Projection%20Neurons%20Instruct%20Inhibitory%20Interneuron%20Circuit%20Development%20in%20a%20Lineage-Dependent%20Manner&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Wester,%20Jason%20C.&rft.date=2019-06-05&rft.volume=102&rft.issue=5&rft.spage=960&rft.epage=975.e6&rft.pages=960-975.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.03.036&rft_dat=%3Cproquest_swepu%3E2235557731%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235557731&rft_id=info:pmid/31027966&rft_els_id=S0896627319302995&rfr_iscdi=true |