RICOPILI: Rapid Imputation for COnsortias PIpeLIne
Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale mul...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-02, Vol.36 (3), p.930-933 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 933 |
---|---|
container_issue | 3 |
container_start_page | 930 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Lam, Max Awasthi, Swapnil Watson, Hunna J Goldstein, Jackie Panagiotaropoulou, Georgia Trubetskoy, Vassily Karlsson, Robert Frei, Oleksander Fan, Chun-Chieh De Witte, Ward Mota, Nina R Mullins, Niamh Brügger, Kim Lee, S Hong Wray, Naomi R Skarabis, Nora Huang, Hailiang Neale, Benjamin Daly, Mark J Mattheisen, Manuel Walters, Raymond Ripke, Stephan |
description | Abstract
Summary
Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.
Availability and implementation
RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_477843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz633</oup_id><sourcerecordid>2270003654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eoh_wE2hz5BI6_nY4IKEVbSOttFUFZ8txvOB2Ywc7oYJfX6NsK_bGySPPM8_YehF6h-EDhoZedD76sI1pMJO3-aKb_ghKX6BjzATUBHjzstRUyJopoEfoJOc7AI4ZY6_REcW0oZyzY0Ru29Xmpl23H6tbM_q-aodxnoozhqrYq9Um5Jgmb3J1045u3Qb3Br3aml12b_fnKfp2-eXr6rpeb67a1ed1bbmCqXYdFVgQJnshemWIErA1TlmDFfSSY0JM3yjJGtx3AjMiOyuwtIo4cF1jCT1F9eLND26cOz0mP5j0W0fj9f7qvlROMykVo4X_tPClM7jeujAlszsYO-wE_0N_j7-0VEIB40Vwvghs8nnyQYeYjMagONGSs0YU4v1-RYo_Z5cnPfhs3W5ngotz1oRIAKCCs4LyJ1nMObnt80Mw6L8J6sME9ZJgmTv79xfPU0-RFQAWIM7jfzofAdVErGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270003654</pqid></control><display><type>article</type><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</creator><creatorcontrib>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</creatorcontrib><description>Abstract
Summary
Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.
Availability and implementation
RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz633</identifier><identifier>PMID: 31393554</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Genome ; Genome-Wide Association Study ; Genomics ; Software</subject><ispartof>Bioinformatics, 2020-02, Vol.36 (3), p.930-933</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</citedby><cites>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</cites><orcidid>0000-0002-8949-2587 ; 0000-0003-3504-759X ; 0000-0002-4256-7844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868045/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868045/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,1598,26544,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31393554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143005992$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Max</creatorcontrib><creatorcontrib>Awasthi, Swapnil</creatorcontrib><creatorcontrib>Watson, Hunna J</creatorcontrib><creatorcontrib>Goldstein, Jackie</creatorcontrib><creatorcontrib>Panagiotaropoulou, Georgia</creatorcontrib><creatorcontrib>Trubetskoy, Vassily</creatorcontrib><creatorcontrib>Karlsson, Robert</creatorcontrib><creatorcontrib>Frei, Oleksander</creatorcontrib><creatorcontrib>Fan, Chun-Chieh</creatorcontrib><creatorcontrib>De Witte, Ward</creatorcontrib><creatorcontrib>Mota, Nina R</creatorcontrib><creatorcontrib>Mullins, Niamh</creatorcontrib><creatorcontrib>Brügger, Kim</creatorcontrib><creatorcontrib>Lee, S Hong</creatorcontrib><creatorcontrib>Wray, Naomi R</creatorcontrib><creatorcontrib>Skarabis, Nora</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Walters, Raymond</creatorcontrib><creatorcontrib>Ripke, Stephan</creatorcontrib><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Summary
Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.
Availability and implementation
RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Genome</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNqNkU1v1DAQhi0Eoh_wE2hz5BI6_nY4IKEVbSOttFUFZ8txvOB2Ywc7oYJfX6NsK_bGySPPM8_YehF6h-EDhoZedD76sI1pMJO3-aKb_ghKX6BjzATUBHjzstRUyJopoEfoJOc7AI4ZY6_REcW0oZyzY0Ru29Xmpl23H6tbM_q-aodxnoozhqrYq9Um5Jgmb3J1045u3Qb3Br3aml12b_fnKfp2-eXr6rpeb67a1ed1bbmCqXYdFVgQJnshemWIErA1TlmDFfSSY0JM3yjJGtx3AjMiOyuwtIo4cF1jCT1F9eLND26cOz0mP5j0W0fj9f7qvlROMykVo4X_tPClM7jeujAlszsYO-wE_0N_j7-0VEIB40Vwvghs8nnyQYeYjMagONGSs0YU4v1-RYo_Z5cnPfhs3W5ngotz1oRIAKCCs4LyJ1nMObnt80Mw6L8J6sME9ZJgmTv79xfPU0-RFQAWIM7jfzofAdVErGE</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lam, Max</creator><creator>Awasthi, Swapnil</creator><creator>Watson, Hunna J</creator><creator>Goldstein, Jackie</creator><creator>Panagiotaropoulou, Georgia</creator><creator>Trubetskoy, Vassily</creator><creator>Karlsson, Robert</creator><creator>Frei, Oleksander</creator><creator>Fan, Chun-Chieh</creator><creator>De Witte, Ward</creator><creator>Mota, Nina R</creator><creator>Mullins, Niamh</creator><creator>Brügger, Kim</creator><creator>Lee, S Hong</creator><creator>Wray, Naomi R</creator><creator>Skarabis, Nora</creator><creator>Huang, Hailiang</creator><creator>Neale, Benjamin</creator><creator>Daly, Mark J</creator><creator>Mattheisen, Manuel</creator><creator>Walters, Raymond</creator><creator>Ripke, Stephan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8949-2587</orcidid><orcidid>https://orcid.org/0000-0003-3504-759X</orcidid><orcidid>https://orcid.org/0000-0002-4256-7844</orcidid></search><sort><creationdate>20200201</creationdate><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><author>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Genome</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Max</creatorcontrib><creatorcontrib>Awasthi, Swapnil</creatorcontrib><creatorcontrib>Watson, Hunna J</creatorcontrib><creatorcontrib>Goldstein, Jackie</creatorcontrib><creatorcontrib>Panagiotaropoulou, Georgia</creatorcontrib><creatorcontrib>Trubetskoy, Vassily</creatorcontrib><creatorcontrib>Karlsson, Robert</creatorcontrib><creatorcontrib>Frei, Oleksander</creatorcontrib><creatorcontrib>Fan, Chun-Chieh</creatorcontrib><creatorcontrib>De Witte, Ward</creatorcontrib><creatorcontrib>Mota, Nina R</creatorcontrib><creatorcontrib>Mullins, Niamh</creatorcontrib><creatorcontrib>Brügger, Kim</creatorcontrib><creatorcontrib>Lee, S Hong</creatorcontrib><creatorcontrib>Wray, Naomi R</creatorcontrib><creatorcontrib>Skarabis, Nora</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Walters, Raymond</creatorcontrib><creatorcontrib>Ripke, Stephan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Max</au><au>Awasthi, Swapnil</au><au>Watson, Hunna J</au><au>Goldstein, Jackie</au><au>Panagiotaropoulou, Georgia</au><au>Trubetskoy, Vassily</au><au>Karlsson, Robert</au><au>Frei, Oleksander</au><au>Fan, Chun-Chieh</au><au>De Witte, Ward</au><au>Mota, Nina R</au><au>Mullins, Niamh</au><au>Brügger, Kim</au><au>Lee, S Hong</au><au>Wray, Naomi R</au><au>Skarabis, Nora</au><au>Huang, Hailiang</au><au>Neale, Benjamin</au><au>Daly, Mark J</au><au>Mattheisen, Manuel</au><au>Walters, Raymond</au><au>Ripke, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>930</spage><epage>933</epage><pages>930-933</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Summary
Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work.
Availability and implementation
RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31393554</pmid><doi>10.1093/bioinformatics/btz633</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8949-2587</orcidid><orcidid>https://orcid.org/0000-0003-3504-759X</orcidid><orcidid>https://orcid.org/0000-0002-4256-7844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-02, Vol.36 (3), p.930-933 |
issn | 1367-4803 1367-4811 1460-2059 1367-4811 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_477843 |
source | Oxford Journals Open Access Collection; MEDLINE; NORA - Norwegian Open Research Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online |
subjects | Algorithms Applications Note Genome Genome-Wide Association Study Genomics Software |
title | RICOPILI: Rapid Imputation for COnsortias PIpeLIne |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RICOPILI:%20Rapid%20Imputation%20for%20COnsortias%20PIpeLIne&rft.jtitle=Bioinformatics&rft.au=Lam,%20Max&rft.date=2020-02-01&rft.volume=36&rft.issue=3&rft.spage=930&rft.epage=933&rft.pages=930-933&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz633&rft_dat=%3Cproquest_swepu%3E2270003654%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270003654&rft_id=info:pmid/31393554&rft_oup_id=10.1093/bioinformatics/btz633&rfr_iscdi=true |