RICOPILI: Rapid Imputation for COnsortias PIpeLIne

Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-02, Vol.36 (3), p.930-933
Hauptverfasser: Lam, Max, Awasthi, Swapnil, Watson, Hunna J, Goldstein, Jackie, Panagiotaropoulou, Georgia, Trubetskoy, Vassily, Karlsson, Robert, Frei, Oleksander, Fan, Chun-Chieh, De Witte, Ward, Mota, Nina R, Mullins, Niamh, Brügger, Kim, Lee, S Hong, Wray, Naomi R, Skarabis, Nora, Huang, Hailiang, Neale, Benjamin, Daly, Mark J, Mattheisen, Manuel, Walters, Raymond, Ripke, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 3
container_start_page 930
container_title Bioinformatics
container_volume 36
creator Lam, Max
Awasthi, Swapnil
Watson, Hunna J
Goldstein, Jackie
Panagiotaropoulou, Georgia
Trubetskoy, Vassily
Karlsson, Robert
Frei, Oleksander
Fan, Chun-Chieh
De Witte, Ward
Mota, Nina R
Mullins, Niamh
Brügger, Kim
Lee, S Hong
Wray, Naomi R
Skarabis, Nora
Huang, Hailiang
Neale, Benjamin
Daly, Mark J
Mattheisen, Manuel
Walters, Raymond
Ripke, Stephan
description Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and implementation RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz633
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_477843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz633</oup_id><sourcerecordid>2270003654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eoh_wE2hz5BI6_nY4IKEVbSOttFUFZ8txvOB2Ywc7oYJfX6NsK_bGySPPM8_YehF6h-EDhoZedD76sI1pMJO3-aKb_ghKX6BjzATUBHjzstRUyJopoEfoJOc7AI4ZY6_REcW0oZyzY0Ru29Xmpl23H6tbM_q-aodxnoozhqrYq9Um5Jgmb3J1045u3Qb3Br3aml12b_fnKfp2-eXr6rpeb67a1ed1bbmCqXYdFVgQJnshemWIErA1TlmDFfSSY0JM3yjJGtx3AjMiOyuwtIo4cF1jCT1F9eLND26cOz0mP5j0W0fj9f7qvlROMykVo4X_tPClM7jeujAlszsYO-wE_0N_j7-0VEIB40Vwvghs8nnyQYeYjMagONGSs0YU4v1-RYo_Z5cnPfhs3W5ngotz1oRIAKCCs4LyJ1nMObnt80Mw6L8J6sME9ZJgmTv79xfPU0-RFQAWIM7jfzofAdVErGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270003654</pqid></control><display><type>article</type><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</creator><creatorcontrib>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</creatorcontrib><description>Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and implementation RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz633</identifier><identifier>PMID: 31393554</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Genome ; Genome-Wide Association Study ; Genomics ; Software</subject><ispartof>Bioinformatics, 2020-02, Vol.36 (3), p.930-933</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</citedby><cites>FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</cites><orcidid>0000-0002-8949-2587 ; 0000-0003-3504-759X ; 0000-0002-4256-7844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868045/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868045/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,881,1598,26544,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31393554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143005992$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Max</creatorcontrib><creatorcontrib>Awasthi, Swapnil</creatorcontrib><creatorcontrib>Watson, Hunna J</creatorcontrib><creatorcontrib>Goldstein, Jackie</creatorcontrib><creatorcontrib>Panagiotaropoulou, Georgia</creatorcontrib><creatorcontrib>Trubetskoy, Vassily</creatorcontrib><creatorcontrib>Karlsson, Robert</creatorcontrib><creatorcontrib>Frei, Oleksander</creatorcontrib><creatorcontrib>Fan, Chun-Chieh</creatorcontrib><creatorcontrib>De Witte, Ward</creatorcontrib><creatorcontrib>Mota, Nina R</creatorcontrib><creatorcontrib>Mullins, Niamh</creatorcontrib><creatorcontrib>Brügger, Kim</creatorcontrib><creatorcontrib>Lee, S Hong</creatorcontrib><creatorcontrib>Wray, Naomi R</creatorcontrib><creatorcontrib>Skarabis, Nora</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Walters, Raymond</creatorcontrib><creatorcontrib>Ripke, Stephan</creatorcontrib><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and implementation RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Genome</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><sourceid>3HK</sourceid><sourceid>D8T</sourceid><recordid>eNqNkU1v1DAQhi0Eoh_wE2hz5BI6_nY4IKEVbSOttFUFZ8txvOB2Ywc7oYJfX6NsK_bGySPPM8_YehF6h-EDhoZedD76sI1pMJO3-aKb_ghKX6BjzATUBHjzstRUyJopoEfoJOc7AI4ZY6_REcW0oZyzY0Ru29Xmpl23H6tbM_q-aodxnoozhqrYq9Um5Jgmb3J1045u3Qb3Br3aml12b_fnKfp2-eXr6rpeb67a1ed1bbmCqXYdFVgQJnshemWIErA1TlmDFfSSY0JM3yjJGtx3AjMiOyuwtIo4cF1jCT1F9eLND26cOz0mP5j0W0fj9f7qvlROMykVo4X_tPClM7jeujAlszsYO-wE_0N_j7-0VEIB40Vwvghs8nnyQYeYjMagONGSs0YU4v1-RYo_Z5cnPfhs3W5ngotz1oRIAKCCs4LyJ1nMObnt80Mw6L8J6sME9ZJgmTv79xfPU0-RFQAWIM7jfzofAdVErGE</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lam, Max</creator><creator>Awasthi, Swapnil</creator><creator>Watson, Hunna J</creator><creator>Goldstein, Jackie</creator><creator>Panagiotaropoulou, Georgia</creator><creator>Trubetskoy, Vassily</creator><creator>Karlsson, Robert</creator><creator>Frei, Oleksander</creator><creator>Fan, Chun-Chieh</creator><creator>De Witte, Ward</creator><creator>Mota, Nina R</creator><creator>Mullins, Niamh</creator><creator>Brügger, Kim</creator><creator>Lee, S Hong</creator><creator>Wray, Naomi R</creator><creator>Skarabis, Nora</creator><creator>Huang, Hailiang</creator><creator>Neale, Benjamin</creator><creator>Daly, Mark J</creator><creator>Mattheisen, Manuel</creator><creator>Walters, Raymond</creator><creator>Ripke, Stephan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8949-2587</orcidid><orcidid>https://orcid.org/0000-0003-3504-759X</orcidid><orcidid>https://orcid.org/0000-0002-4256-7844</orcidid></search><sort><creationdate>20200201</creationdate><title>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</title><author>Lam, Max ; Awasthi, Swapnil ; Watson, Hunna J ; Goldstein, Jackie ; Panagiotaropoulou, Georgia ; Trubetskoy, Vassily ; Karlsson, Robert ; Frei, Oleksander ; Fan, Chun-Chieh ; De Witte, Ward ; Mota, Nina R ; Mullins, Niamh ; Brügger, Kim ; Lee, S Hong ; Wray, Naomi R ; Skarabis, Nora ; Huang, Hailiang ; Neale, Benjamin ; Daly, Mark J ; Mattheisen, Manuel ; Walters, Raymond ; Ripke, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-eb3616247d66d8a2860fae8ca180d75122ad987491db61427bc617c82e0eb9c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Genome</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Max</creatorcontrib><creatorcontrib>Awasthi, Swapnil</creatorcontrib><creatorcontrib>Watson, Hunna J</creatorcontrib><creatorcontrib>Goldstein, Jackie</creatorcontrib><creatorcontrib>Panagiotaropoulou, Georgia</creatorcontrib><creatorcontrib>Trubetskoy, Vassily</creatorcontrib><creatorcontrib>Karlsson, Robert</creatorcontrib><creatorcontrib>Frei, Oleksander</creatorcontrib><creatorcontrib>Fan, Chun-Chieh</creatorcontrib><creatorcontrib>De Witte, Ward</creatorcontrib><creatorcontrib>Mota, Nina R</creatorcontrib><creatorcontrib>Mullins, Niamh</creatorcontrib><creatorcontrib>Brügger, Kim</creatorcontrib><creatorcontrib>Lee, S Hong</creatorcontrib><creatorcontrib>Wray, Naomi R</creatorcontrib><creatorcontrib>Skarabis, Nora</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Neale, Benjamin</creatorcontrib><creatorcontrib>Daly, Mark J</creatorcontrib><creatorcontrib>Mattheisen, Manuel</creatorcontrib><creatorcontrib>Walters, Raymond</creatorcontrib><creatorcontrib>Ripke, Stephan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Max</au><au>Awasthi, Swapnil</au><au>Watson, Hunna J</au><au>Goldstein, Jackie</au><au>Panagiotaropoulou, Georgia</au><au>Trubetskoy, Vassily</au><au>Karlsson, Robert</au><au>Frei, Oleksander</au><au>Fan, Chun-Chieh</au><au>De Witte, Ward</au><au>Mota, Nina R</au><au>Mullins, Niamh</au><au>Brügger, Kim</au><au>Lee, S Hong</au><au>Wray, Naomi R</au><au>Skarabis, Nora</au><au>Huang, Hailiang</au><au>Neale, Benjamin</au><au>Daly, Mark J</au><au>Mattheisen, Manuel</au><au>Walters, Raymond</au><au>Ripke, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RICOPILI: Rapid Imputation for COnsortias PIpeLIne</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>930</spage><epage>933</epage><pages>930-933</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Summary Genome-wide association study (GWAS) analyses, at sufficient sample sizes and power, have successfully revealed biological insights for several complex traits. RICOPILI, an open-sourced Perl-based pipeline was developed to address the challenges of rapidly processing large-scale multi-cohort GWAS studies including quality control (QC), imputation and downstream analyses. The pipeline is computationally efficient with portability to a wide range of high-performance computing environments. RICOPILI was created as the Psychiatric Genomics Consortium pipeline for GWAS and adopted by other users. The pipeline features (i) technical and genomic QC in case-control and trio cohorts, (ii) genome-wide phasing and imputation, (iv) association analysis, (v) meta-analysis, (vi) polygenic risk scoring and (vii) replication analysis. Notably, a major differentiator from other GWAS pipelines, RICOPILI leverages on automated parallelization and cluster job management approaches for rapid production of imputed genome-wide data. A comprehensive meta-analysis of simulated GWAS data has been incorporated demonstrating each step of the pipeline. This includes all the associated visualization plots, to allow ease of data interpretation and manuscript preparation. Simulated GWAS datasets are also packaged with the pipeline for user training tutorials and developer work. Availability and implementation RICOPILI has a flexible architecture to allow for ongoing development and incorporation of newer available algorithms and is adaptable to various HPC environments (QSUB, BSUB, SLURM and others). Specific links for genomic resources are either directly provided in this paper or via tutorials and external links. The central location hosting scripts and tutorials is found at this URL: https://sites.google.com/a/broadinstitute.org/RICOPILI/home Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31393554</pmid><doi>10.1093/bioinformatics/btz633</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8949-2587</orcidid><orcidid>https://orcid.org/0000-0003-3504-759X</orcidid><orcidid>https://orcid.org/0000-0002-4256-7844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-02, Vol.36 (3), p.930-933
issn 1367-4803
1367-4811
1460-2059
1367-4811
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_477843
source Oxford Journals Open Access Collection; MEDLINE; NORA - Norwegian Open Research Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Algorithms
Applications Note
Genome
Genome-Wide Association Study
Genomics
Software
title RICOPILI: Rapid Imputation for COnsortias PIpeLIne
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RICOPILI:%20Rapid%20Imputation%20for%20COnsortias%20PIpeLIne&rft.jtitle=Bioinformatics&rft.au=Lam,%20Max&rft.date=2020-02-01&rft.volume=36&rft.issue=3&rft.spage=930&rft.epage=933&rft.pages=930-933&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz633&rft_dat=%3Cproquest_swepu%3E2270003654%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270003654&rft_id=info:pmid/31393554&rft_oup_id=10.1093/bioinformatics/btz633&rfr_iscdi=true